Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cr...Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures.展开更多
东南印度洋脊(Southeast Indian Ridge,简称SEIR)是中速扩张洋中脊,在其中的108°—134°E区域的全扩张速率为72~76 mm·a^-1。但在接近澳大利亚-南极洲不整合带(Australian-Antarctic Discordance,简称AAD)区内,海底地貌...东南印度洋脊(Southeast Indian Ridge,简称SEIR)是中速扩张洋中脊,在其中的108°—134°E区域的全扩张速率为72~76 mm·a^-1。但在接近澳大利亚-南极洲不整合带(Australian-Antarctic Discordance,简称AAD)区内,海底地貌沿洋中脊的变化强烈,其变化范围涵盖了从慢速到快速扩张洋中脊上常见的例子,且出现了明显的地球物理与地球化学异常,说明洋中脊在AAD区附近的岩浆供应量极不均匀。文章定量分析了高精度多波束测深数据,计算了洋中脊不同段的地形坡度、断层比例以及平面与剖面的岩浆参数M值,结合研究区内剩余地幔布格重力异常以及洋中脊轴部地球化学指标Na8.0、Fe8.0等资料,分析与讨论了研究区的断层构造与岩浆活动特征的关系。研究发现,东南印度洋脊108°—134°E区域的B区(在AAD区内)及C5段(在AAD区外西侧)发育有大量的海洋核杂岩,而且B区的海洋核杂岩单体规模更大,其中最大的位于B3区,沿洋中脊扩张方向延伸约50km。研究结果首次系统性地显示,相比东南印度洋的其他区域, B和C5异常区具有偏低的平面与剖面M值、偏高的断层比例、偏正的地幔布格重力异常以及偏高的Na8.0值与偏低的Fe8.0值,这些异常特征可能反映了B区和C5段的岩浆初始熔融深度较浅以及岩浆熔融程度较低,因此导致其岩浆供应量异常少,形成较薄的地壳。研究结果同时表明,在岩浆供应量极少的洋中脊,构造伸展作用有利于海洋核杂岩的发育,导致地壳进一步减薄。展开更多
利用美国的全球海洋同化资料SODA(simple ocean data assimilation)2.2.4(1871—2008)中的风应力数据,估算了风输入给南海波浪的能量。结果表明,风向南海波浪输入能量的年均值约为0.2TW,其空间分布冬季以南海北部为主,夏季以南部为主且...利用美国的全球海洋同化资料SODA(simple ocean data assimilation)2.2.4(1871—2008)中的风应力数据,估算了风输入给南海波浪的能量。结果表明,风向南海波浪输入能量的年均值约为0.2TW,其空间分布冬季以南海北部为主,夏季以南部为主且强度比冬季要弱得多;风对南海波浪能量的输入一直呈减少趋势,用欧洲中期天气预报中心的再分析资料ERA-40(European Centre for Medium-Range Weather Forecasts re-analysis-40)(1957—2002)和ERA-20C(1900—2010)中的风场和海浪资料得到的趋势也是如此,1950年以来每年减少0.43%。用ERA-interim(1979—2014)中的有效波高数据可以把风给风浪和涌浪的能量输入区分开,两者的空间分布皆以南海北部为主,而给风浪的能量输入在南海南部还有一个高值区。尽管风输入给涌浪的能量略有增加,但给风浪的能量输入在不断减少,两者之和仍是减少。究其原因,控制南海的东亚季风最近几十年一直在减弱。这些结果对认识南海波浪未来的变化及其预报具有意义。展开更多
Two important nonlinear properties of seawater thermodynamics linked to changes of water density, cab beling and elasticity (compressibility), are discussed. Eddy diffusion and advection lead to changes in den sity;...Two important nonlinear properties of seawater thermodynamics linked to changes of water density, cab beling and elasticity (compressibility), are discussed. Eddy diffusion and advection lead to changes in den sity; as a result, gravitational potential energy of the system is changed. Therefore, cabbeling and elasticity play key roles in the energetics of lateral eddy diffusion and advection. Vertical eddy diffusion is one of the key elements in the mechanical energy balance of the global oceans. Vertical eddy diffusion can be con ceptually separated into two steps: stirring and subscale diffusion. Vertical eddy stirring pushes cold/dense water upward and warm/light water downward; thus, gravitational potential energy is increased. During the second steps, water masses from different places mix through subscale diffusion, and water density is increased due to cabbeling. UsingWOA01 climatology and assuming the vertical eddy diffusivity is equal to a constant value of 2x103 pa2/s, the total amount of gravitational potential energy increase due to vertical stirring in the world oceans is estimated at 263 GW. Cabbeling associated with vertical subscale diffusion is a sink of gravitational potential energy, and the total value of energy lost is estimated at 73 GW. Therefore, the net source of gravitational potential energy due to vertical eddy diffusion for the world oceans is estimated at 189 GW.展开更多
The dinoflagellate Noctiluca scintillans is one of the most important and abundant red tide organisms and it is distributed world-wide. It occurs in two forms. Red Noctiluca is heterotrophic and fills the role of one ...The dinoflagellate Noctiluca scintillans is one of the most important and abundant red tide organisms and it is distributed world-wide. It occurs in two forms. Red Noctiluca is heterotrophic and fills the role of one of the microzooplankton grazers in the foodweb. In contrast, green Noctiluca contains a photosynthetic symbiont Pedinomonas noctilucae (a prasinophyte), but it also feeds on other plankton when the food supply is abundant. In this review, we document the global distribution of these two forms and include the first maps of their global distribution. Red Noctiluca occurs widely in the temperate to sub-tropical coastal regions of the world. It occurs over a wide temperature range of about 10℃ to 25℃ and at higher salinities (generally not in estuaries). It is particularly abundant in high productivity areas such as upwelling or eutrophic areas where diatoms dominate since they are its preferred food source. Green Noctiluca is much more restricted to a temperature range of 25℃-30℃ and mainly occurs in tropical waters of Southeast Asia, Bay of Bengal (east coast of India), in the eastern, western and northern Arabian Sea, the Red Sea, and recently it has become very abundant in the Gulf of Oman. Red and green Noctiluca do overlap in their distribution in the eastern, northern and western Arabian Sea with a seasonal shift from green Noctiluca in the cooler winter convective mixing, higher productivity season, to red Noctiluca in the more oligotrophic warmer summer season.展开更多
In this study the interannual variability of the upper-ocean heat content in the South China Sea (SCS) was revisited using simple ocean data assimilation (SODA) combined with objective analyzed data sets that incl...In this study the interannual variability of the upper-ocean heat content in the South China Sea (SCS) was revisited using simple ocean data assimilation (SODA) combined with objective analyzed data sets that included the horizontal and vertical structures. The results confirmed that the upper-ocean heat content in the SCS is lower than normal during the mature phase of E1 Nifio events, and two super E1 Nifio events, 1982/1983 and 1997/1998 were also included. The variability of the heat content was consistent with the variability of the dynamic height anomalies. The SCS throughflow (SCSTF) plays an important role in regulating the interannual variability of the heat content, especially during the mature phase of E1 Nifio events.展开更多
文摘Preserving microbial diversity has become a strategic undertaking. Thus, ex situ microalgal culture conservation results in strategic and functional resource in both biodiversity protection and application domains. Cryopreservation of microalgae has been practiced since the 1960s and is now considered the optimal preservation strategy. Furthermore, the overall monitoring during growth of cultures after freezing/thawing protocols was hardly investigated and there is poor evaluation related to preserve especially the photosystem apparatus. The present study focuses on Stichococcus bacillaris as case study for short-term cryopreservation at −80 °C storage. Various freezing pretreatments using cryoprotective agents, and two thawing methods were compared introducing a novel variable to evaluate viability recovery and assessing growth kinetics of cultures immediately after thawing and after a series batch cultivation. Photosynthetic rate and pigments assessment were proposed to evaluate hidden metabolic cell damage. Results underline cryoprotective agents can increase the kinetic recovery of preserved cells in terms of reduction of lag phase during batch cultivation tests: the use of dimethyl sulfoxide and glycerol granted a growth comparable to unpreserved cells when sudden thawing occurs after 24 hours of storage, but recovery after preservation is less sensitive to cryoprotective agents when gradual thawing and 1 month of storage is considered. However, cells are always able to restore their physiological pathways even without agents, so their kinetic effect has been proved and quantified. Interestingly, both the photosynthetic efficiency and the ratio between total chlorophyll and carotenoids are comparable (0.75 F<sub>v</sub>/F<sub>m</sub>, 2.2 ± 0.25 g/g) to unpreserved cells and they are unsensitive to chosen agents, but the ratio between chlorophyll a and chlorophyll b was clearly altered (up to 10 times), suggesting that photoactive pigments relative proportions can result in similar growth kinetic performances. Long-term studies will be carried out to assess whether the differences found could cause chronic damage to photosystem efficiency of S. bacillaris cultures.
基金科技部973项目2013CB956503号+7 种基金海洋公益性项目201005006-01号国家自然科学基金项目41106090号中央高校基本科研业务费专项资金21612401号U.S.Centers for Disease Control and PreventionU01 EH000421号
基金the grant of the National Science F oundation of the United States:Petrogenesis of Archean Granitoidsand Implications for the Geochemical Evolution of Cratonic Lithosphere( EAR-0 0 0 3 63 8)
文摘利用美国的全球海洋同化资料SODA(simple ocean data assimilation)2.2.4(1871—2008)中的风应力数据,估算了风输入给南海波浪的能量。结果表明,风向南海波浪输入能量的年均值约为0.2TW,其空间分布冬季以南海北部为主,夏季以南部为主且强度比冬季要弱得多;风对南海波浪能量的输入一直呈减少趋势,用欧洲中期天气预报中心的再分析资料ERA-40(European Centre for Medium-Range Weather Forecasts re-analysis-40)(1957—2002)和ERA-20C(1900—2010)中的风场和海浪资料得到的趋势也是如此,1950年以来每年减少0.43%。用ERA-interim(1979—2014)中的有效波高数据可以把风给风浪和涌浪的能量输入区分开,两者的空间分布皆以南海北部为主,而给风浪的能量输入在南海南部还有一个高值区。尽管风输入给涌浪的能量略有增加,但给风浪的能量输入在不断减少,两者之和仍是减少。究其原因,控制南海的东亚季风最近几十年一直在减弱。这些结果对认识南海波浪未来的变化及其预报具有意义。
文摘Two important nonlinear properties of seawater thermodynamics linked to changes of water density, cab beling and elasticity (compressibility), are discussed. Eddy diffusion and advection lead to changes in den sity; as a result, gravitational potential energy of the system is changed. Therefore, cabbeling and elasticity play key roles in the energetics of lateral eddy diffusion and advection. Vertical eddy diffusion is one of the key elements in the mechanical energy balance of the global oceans. Vertical eddy diffusion can be con ceptually separated into two steps: stirring and subscale diffusion. Vertical eddy stirring pushes cold/dense water upward and warm/light water downward; thus, gravitational potential energy is increased. During the second steps, water masses from different places mix through subscale diffusion, and water density is increased due to cabbeling. UsingWOA01 climatology and assuming the vertical eddy diffusivity is equal to a constant value of 2x103 pa2/s, the total amount of gravitational potential energy increase due to vertical stirring in the world oceans is estimated at 263 GW. Cabbeling associated with vertical subscale diffusion is a sink of gravitational potential energy, and the total value of energy lost is estimated at 73 GW. Therefore, the net source of gravitational potential energy due to vertical eddy diffusion for the world oceans is estimated at 189 GW.
基金the University Grants Council of Hong Kong and its Area of Excellence Program to PJH. KF was supported by a JSPS grant on the ecophysiology of green Noctiluca in the Gulf of Thailand. PMG received funding from NSF (No. OCE-1015980)This is contribution number 4502 from the University of Maryland Center for Environmental Studies. KY Acknowledges Support from the CAS/SAFEA International Partnership Program for Creative Research Teams (No. KZCXZYW-T001). DMA received partial funding through the NSF/NIEHS Centers for Oceans and Human Health (No. NIEHS P50 ES012742, NSF OCE- 043072 and OCE-0911031), and through NSF Grant (No. OCE-0850421)+1 种基金 This paper is based on work partially supported by SCOR/LOICZ Working Group 132, supported by the Scientific Committee on Oceanographic Research (SCOR) through grants from the U.S. National Science Foundation (No OCE-0938349 and OCE-0813697) from the Land-Ocean Interactions in the Coastal Zone (LOICZ) Project and the Chinese Academy of Sciences. We thank A. KANA for assistance with the GIS produced maps and LIU Hao for his assistance with the tables and references.
文摘The dinoflagellate Noctiluca scintillans is one of the most important and abundant red tide organisms and it is distributed world-wide. It occurs in two forms. Red Noctiluca is heterotrophic and fills the role of one of the microzooplankton grazers in the foodweb. In contrast, green Noctiluca contains a photosynthetic symbiont Pedinomonas noctilucae (a prasinophyte), but it also feeds on other plankton when the food supply is abundant. In this review, we document the global distribution of these two forms and include the first maps of their global distribution. Red Noctiluca occurs widely in the temperate to sub-tropical coastal regions of the world. It occurs over a wide temperature range of about 10℃ to 25℃ and at higher salinities (generally not in estuaries). It is particularly abundant in high productivity areas such as upwelling or eutrophic areas where diatoms dominate since they are its preferred food source. Green Noctiluca is much more restricted to a temperature range of 25℃-30℃ and mainly occurs in tropical waters of Southeast Asia, Bay of Bengal (east coast of India), in the eastern, western and northern Arabian Sea, the Red Sea, and recently it has become very abundant in the Gulf of Oman. Red and green Noctiluca do overlap in their distribution in the eastern, northern and western Arabian Sea with a seasonal shift from green Noctiluca in the cooler winter convective mixing, higher productivity season, to red Noctiluca in the more oligotrophic warmer summer season.
基金supported by the National Natural Science Foundation of China (GrantNo. 40806005)by the Chinese Academy of Sciences’Knowledge Innovation Program (Grant No. KZCX2-YW-Q11-02)partially supported under the South China Sea Institute of Oceanology (Grant No. SQ200814)
文摘In this study the interannual variability of the upper-ocean heat content in the South China Sea (SCS) was revisited using simple ocean data assimilation (SODA) combined with objective analyzed data sets that included the horizontal and vertical structures. The results confirmed that the upper-ocean heat content in the SCS is lower than normal during the mature phase of E1 Nifio events, and two super E1 Nifio events, 1982/1983 and 1997/1998 were also included. The variability of the heat content was consistent with the variability of the dynamic height anomalies. The SCS throughflow (SCSTF) plays an important role in regulating the interannual variability of the heat content, especially during the mature phase of E1 Nifio events.