Chronic kidney disease(CKD) is recognised as a health concern globally and leads to high rates of morbidity,mortality and healthcare expenditure.CKD is itself an independent risk factor for unfavorable health outcomes...Chronic kidney disease(CKD) is recognised as a health concern globally and leads to high rates of morbidity,mortality and healthcare expenditure.CKD is itself an independent risk factor for unfavorable health outcomes that include cardiovascular disease(CVD).Coronary artery disease is the primary type of CVD in CKD patients and a significant cause of death among renal transplant patients.Traditional and non-traditional risk factors for CVD exist in patients with CKD.Traditional factors include smoking,hypertension,dyslipidemia and diabetes which are highly prevalent in CKD patients.Non-traditional risk factors of CKD are mainly uraemiaspecific and increase in prevalence as kidney function declines.Some examples of uraemia-specific risk factors that have been well documented include low levels of haemoglobin,albuminuria,and abnormal bone and mineral metabolism.Therapeutic interventions targeted at more traditional risk factors which contribute to CVD,have not had the desired effect on lowering CVD events and mortality in those suffering with CKD.Future research is warranted to delineate clear evidence to the benefit of modifying non-traditional risk factors.展开更多
AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incret...AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge.Following a lipid challenge,plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h.Incretin hormones [glucagon like peptide-1(GLP-1),peptide tyrosine-tyrosine(PYY) and glucose dependent insulinotropic polypeptide(GIP)] were then quantitated.The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice.Additionally,a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition.To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition,other interventions [inhibitors of dipeptidyl peptidase-IV(sitagliptin),pancreatic lipase(Orlistat),GPR119 knockout mice] were evaluated.RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice werelipid challenged and levels of both active and total GLP-1 in the plasma were increased.This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice.Furthermore,PF-04620110 was able to dose responsively increase GLP-1 and PYY,but blunt GIP at all doses of PF-04620110 during lipid challenge.Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1.In contrast,in a combination study with Orlistat,the ability of PF-04620110 to elicit an enhanced incretin response was abrogated.To further explore this observation,GPR119 knockout mice were evaluated.In response to a lipid challenge,GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY.However,PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.CONCLUSION Collectively,these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.展开更多
Drug metabolism and pharmacokinetics(DMPK) is an important branch of pharmaceutical sciences.The nature of ADME(absorption,distribution,metabolism,excretion) and PK(pharmacokinetics) inquiries during drug discovery an...Drug metabolism and pharmacokinetics(DMPK) is an important branch of pharmaceutical sciences.The nature of ADME(absorption,distribution,metabolism,excretion) and PK(pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems.Tremendous progress has been made in the past decade,not only in the characterization of physiochemical properties of drugs that influence their ADME,target organ exposure,and toxicity,but also in the identification of design principles that can minimize drug-drug interaction(DDI) potentials and reduce the attritions.The importance of membrane transporters in drug disposition,efficacy,and safety,as well as the interplay with metabolic processes,has been increasingly recognized.Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs,such as peptides,oligonucleotides,and antibody-drug conjugates,necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties.In this review,we highlight some of the most notable advances in the last decade,and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.展开更多
文摘Chronic kidney disease(CKD) is recognised as a health concern globally and leads to high rates of morbidity,mortality and healthcare expenditure.CKD is itself an independent risk factor for unfavorable health outcomes that include cardiovascular disease(CVD).Coronary artery disease is the primary type of CVD in CKD patients and a significant cause of death among renal transplant patients.Traditional and non-traditional risk factors for CVD exist in patients with CKD.Traditional factors include smoking,hypertension,dyslipidemia and diabetes which are highly prevalent in CKD patients.Non-traditional risk factors of CKD are mainly uraemiaspecific and increase in prevalence as kidney function declines.Some examples of uraemia-specific risk factors that have been well documented include low levels of haemoglobin,albuminuria,and abnormal bone and mineral metabolism.Therapeutic interventions targeted at more traditional risk factors which contribute to CVD,have not had the desired effect on lowering CVD events and mortality in those suffering with CKD.Future research is warranted to delineate clear evidence to the benefit of modifying non-traditional risk factors.
文摘AIM To examine the role that enzyme Acyl-CoA:diacylglycerol acyltransferase-1(DGAT1) plays in postprandial gut peptide secretion and signaling.METHODS The standard experimental paradigm utilized to evaluate the incretin response was a lipid challenge.Following a lipid challenge,plasma was collected via cardiac puncture at each time point from a cohort of 5-8 mice per group from baseline at time zero to 10 h.Incretin hormones [glucagon like peptide-1(GLP-1),peptide tyrosine-tyrosine(PYY) and glucose dependent insulinotropic polypeptide(GIP)] were then quantitated.The impact of pharmacological inhibition of DGAT1 on the incretin effect was evaluated in WT mice.Additionally,a comparison of loss of DGAT1 function either by genetic ablation or pharmacological inhibition.To further elucidate the pathways and mechanisms involved in the incretin response to DGAT1 inhibition,other interventions [inhibitors of dipeptidyl peptidase-IV(sitagliptin),pancreatic lipase(Orlistat),GPR119 knockout mice] were evaluated.RESULTS DGAT1 deficient mice and wildtype C57/BL6J mice werelipid challenged and levels of both active and total GLP-1 in the plasma were increased.This response was further augmented with DGAT1 inhibitor PF-04620110 treated wildtype mice.Furthermore,PF-04620110 was able to dose responsively increase GLP-1 and PYY,but blunt GIP at all doses of PF-04620110 during lipid challenge.Combination treatment of PF-04620110 and Sitagliptin in wildtype mice during a lipid challenge synergistically enhanced postprandial levels of active GLP-1.In contrast,in a combination study with Orlistat,the ability of PF-04620110 to elicit an enhanced incretin response was abrogated.To further explore this observation,GPR119 knockout mice were evaluated.In response to a lipid challenge,GPR119 knockout mice exhibited no increase in active or total GLP-1 and PYY.However,PF-04620110 was able to increase total GLP-1 and PYY in GPR119 knockout mice as compared to vehicle treated wildtype mice.CONCLUSION Collectively,these data provide some insight into the mechanism by which inhibition of DGAT1 enhances intestinal hormone release.
基金supported in part by grants from the National Institutes of Health (CA023074,CA092596,ES004940,ES006694,and ES020867,USA)。
文摘Drug metabolism and pharmacokinetics(DMPK) is an important branch of pharmaceutical sciences.The nature of ADME(absorption,distribution,metabolism,excretion) and PK(pharmacokinetics) inquiries during drug discovery and development has evolved in recent years from being largely descriptive to seeking a more quantitative and mechanistic understanding of the fate of drug candidates in biological systems.Tremendous progress has been made in the past decade,not only in the characterization of physiochemical properties of drugs that influence their ADME,target organ exposure,and toxicity,but also in the identification of design principles that can minimize drug-drug interaction(DDI) potentials and reduce the attritions.The importance of membrane transporters in drug disposition,efficacy,and safety,as well as the interplay with metabolic processes,has been increasingly recognized.Dramatic increases in investments on new modalities beyond traditional small and large molecule drugs,such as peptides,oligonucleotides,and antibody-drug conjugates,necessitated further innovations in bioanalytical and experimental tools for the characterization of their ADME properties.In this review,we highlight some of the most notable advances in the last decade,and provide future perspectives on potential major breakthroughs and innovations in the translation of DMPK science in various stages of drug discovery and development.