The subsidence history of the Soutpansberg Basin was reconstructed by a tectonic subsidence analysis coupled with backstripping calculations based on data of newly interpreted sequence boundaries. Furthermore, burial ...The subsidence history of the Soutpansberg Basin was reconstructed by a tectonic subsidence analysis coupled with backstripping calculations based on data of newly interpreted sequence boundaries. Furthermore, burial and time plots were constructed in order to understand the burial and thermal history of the basin. Input data were based on facies, lithostratigraphic models and tectonic interpretations. The studied succession is up to 1000 m and is underlain by the Achaean Limpopo Mobile Belt. The subsidence within the basin supports the primary graben system which must have been centred within the present basins, and later became a region of faulting. The subsidence and burial history curves suggests two phases of rapid subsidence during the Early-Late Permian (300–230 Ma) and Middle Triassic (215–230 Ma). The areas of greater extension subsided more rapidly during these intervals. Two slow subsidence phases are observed during the Late Triassic (215–198 Ma) and Early Jurassic (198–100 Ma). These intervals represent the post-rift thermal subsidence and are interpreted as slow flexural subsidence. Based on these observations on the subsidence curves, it is possible to infer that the first stage of positive inflexion (300 Ma) is therefore recognised as the first stage of the Soutpansberg Basin formation.展开更多
In the oil sands industry, high temperature with the addition of a caustic dispersing agent has formed the basis of the Clark hot water extraction process used successfully on a commercial scale to recover bitumen fro...In the oil sands industry, high temperature with the addition of a caustic dispersing agent has formed the basis of the Clark hot water extraction process used successfully on a commercial scale to recover bitumen from surface mined oil sands ore since 1967. Processes different from the established Clark process (high temperature and caustic) have been developed to work at a range of temperatures with or without the use of sodium hydroxide. Large scale bitumen extraction pilot tests were performed with two different extraction processes and large strain consolidation tests were performed on the resulting different railings. These consolidation tests determined the compressibility and hydraulic conductivity relationships with void ratio which are engineering properties that influence the long-term disposal of the fine tailings. They were used in large strain consolidation numerical analyses of storage ponds to predict water release rates and changes to surface elevations that impact storage volumes and elevation of reclamation surfaces.展开更多
基金financially supported by the Coaltech Research Association and the University of Fort Hare
文摘The subsidence history of the Soutpansberg Basin was reconstructed by a tectonic subsidence analysis coupled with backstripping calculations based on data of newly interpreted sequence boundaries. Furthermore, burial and time plots were constructed in order to understand the burial and thermal history of the basin. Input data were based on facies, lithostratigraphic models and tectonic interpretations. The studied succession is up to 1000 m and is underlain by the Achaean Limpopo Mobile Belt. The subsidence within the basin supports the primary graben system which must have been centred within the present basins, and later became a region of faulting. The subsidence and burial history curves suggests two phases of rapid subsidence during the Early-Late Permian (300–230 Ma) and Middle Triassic (215–230 Ma). The areas of greater extension subsided more rapidly during these intervals. Two slow subsidence phases are observed during the Late Triassic (215–198 Ma) and Early Jurassic (198–100 Ma). These intervals represent the post-rift thermal subsidence and are interpreted as slow flexural subsidence. Based on these observations on the subsidence curves, it is possible to infer that the first stage of positive inflexion (300 Ma) is therefore recognised as the first stage of the Soutpansberg Basin formation.
文摘In the oil sands industry, high temperature with the addition of a caustic dispersing agent has formed the basis of the Clark hot water extraction process used successfully on a commercial scale to recover bitumen from surface mined oil sands ore since 1967. Processes different from the established Clark process (high temperature and caustic) have been developed to work at a range of temperatures with or without the use of sodium hydroxide. Large scale bitumen extraction pilot tests were performed with two different extraction processes and large strain consolidation tests were performed on the resulting different railings. These consolidation tests determined the compressibility and hydraulic conductivity relationships with void ratio which are engineering properties that influence the long-term disposal of the fine tailings. They were used in large strain consolidation numerical analyses of storage ponds to predict water release rates and changes to surface elevations that impact storage volumes and elevation of reclamation surfaces.