Ocular adnexal(OA)lymphoproliferative disorders are a heterogeneous group of diseases that for many years were lumped together by clinical ophthalmologists for prognostication purposes(1).The majority are extranodal n...Ocular adnexal(OA)lymphoproliferative disorders are a heterogeneous group of diseases that for many years were lumped together by clinical ophthalmologists for prognostication purposes(1).The majority are extranodal non-Hodgkin’s small B cell lymphomas,first largely characterized before current classification systems or diagnostic tools existed(2).The term“ocular adnexa”refers to the structures surrounding the eye itself including the orbital soft tissues,eyelids,conjunctiva,lacrimal production and drainage system and the extraocular muscles;each of these sites can be afflicted with disease.The typical low-grade lymphoma of this area presents as a painless mass that molds to the structures within this orbital space.In the orbit specifically,lymphoma is the most commonly encountered neoplasm.The mucosal associated lymphoid tissue of the conjunctiva lends specifically to the development of extranodal marginal zone lymphoma(EMZL)in many cases,often as the primary site of disease(3).展开更多
The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In t...The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.展开更多
The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by ...The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.展开更多
A new search for two-neutrino double-beta(2νββ)decay of^(136)Xe to the 0+1 excited state of 136Ba is performed with the full EXO-200 dataset.A deep learning-based convolutional neural network is used to discriminat...A new search for two-neutrino double-beta(2νββ)decay of^(136)Xe to the 0+1 excited state of 136Ba is performed with the full EXO-200 dataset.A deep learning-based convolutional neural network is used to discriminate signal from background events.Signal detection efficiency is increased relative to previous searches by EXO-200 by more than a factor of two.With the addition of the Phase II dataset taken with an upgraded detector,the median 90%confidence level half-life sensitivity of 2νββdecay to the 0+1 state of 136Ba is 2.9×10^(24)yr using a total^(136)Xe exposure of 234.1 kg yr.No statistically significant evidence for 2νββdecay to the 0^(+)_(1)state is observed,leading to a lower limit of T2ν1/2(0^(+)→0^(+)_(1))>1.4×10^(24)yr at 90%confidence level,improved by 70%relative to the current world's best constraint.展开更多
文摘Ocular adnexal(OA)lymphoproliferative disorders are a heterogeneous group of diseases that for many years were lumped together by clinical ophthalmologists for prognostication purposes(1).The majority are extranodal non-Hodgkin’s small B cell lymphomas,first largely characterized before current classification systems or diagnostic tools existed(2).The term“ocular adnexa”refers to the structures surrounding the eye itself including the orbital soft tissues,eyelids,conjunctiva,lacrimal production and drainage system and the extraocular muscles;each of these sites can be afflicted with disease.The typical low-grade lymphoma of this area presents as a painless mass that molds to the structures within this orbital space.In the orbit specifically,lymphoma is the most commonly encountered neoplasm.The mucosal associated lymphoid tissue of the conjunctiva lends specifically to the development of extranodal marginal zone lymphoma(EMZL)in many cases,often as the primary site of disease(3).
基金Daya Bay is supported in part by the Ministry of Science and Technology o f China, the U.S. Department o f Energy, the Chinese Academy of Sciences, the CASCenter for Excellence in Particle Physics, the National Natural Science Foundation of China, the Guangdong provincial government, the Shenzhen municipal government,the China General Nuclear Power Group, Key Laboratory of Particle and Radiation Imaging (Tsinghua University), the Ministry of Education, Key Laboratory ofParticle Physics and Particle Irradiation (Shandong University), the Ministry o f Education, Shanghai Laboratory for Particle Physics and Cosmology, the ResearchGrants Council o f the Hong Kong Special Administrative Region of China, the University Development Fund of the University of Hong Kong, the MOE program forResearch of Excellence at National Taiwan University, National Chiao-Tung University, NSC fund support from Taiwan, the U.S. National Science Foundation, the AlfredP. Sloan Foundation, the Ministry o f Education, Youth, and Sports of the Czech Republic, the Charles University GAUK (284317), the Joint Institute o f NuclearResearch in Dubna, Russia, the National Commission of Scientific and Technological Research of Chile, and the Tsinghua University Initiative Scientific Research Program.
文摘The establishment of a possible connection between neutrino emission and gravitational-wave(GW)bursts is important to our understanding of the physical processes that occur when black holes or neutron stars merge.In the Daya Bay experiment,using the data collected from December 2011 to August 2017,a search was per-formed for electron-antineutrino signals that coincided with detected GW events,including GW150914,GW151012,GW151226,GW170104,GW170608,GW 170814,and GW 170817.We used three time windows of±10,±500,and±1000 s relative to the occurrence of the GW events and a neutrino energy range of 1.8 to 100 MeV to search for correlated neutrino candidates.The detected electron-antineutrino candidates were consistent with the expected background rates for all the three time windows.Assuming monochromatic spectra,we found upper limits(90%confidence level)of the electron-antineutrino fluence of(1.13-2.44)×10^(11)cm^(-2)at 5 MeV to 8.0×10^(7)cm^(-2)at 100 MeV for the three time w indows.Under the assumption of a Fermi-Dirac spectrum,the upper limits were found to be(5.4-7.0)×10^(9)cm^(2)for the three time windows.
基金Supported in part by the Ministry of Science and Technology of Chinathe U.S.Department of Energy,the Chinese Academy of Sciences,the CAS Center for Excellence in Particle Physics,the National Natural Science Foundation of China+3 种基金the Guangdong provincial governmentthe Shenzhen municipal government,the China General Nuclear Power Group,the Research Grants Council of the Hong Kong Special Administrative Region of China,the Ministry of Education in TWthe U.S.National Science Foundation,the Ministry of Education,Youth,and Sports of the Czech Republic,the Charles University Research Centre UNCE,the Joint Institute of Nuclear Research in Dubna,Russiathe National Commission of Scientific and Technological Research of Chile。
文摘The prediction of reactor antineutrino spectra will play a crucial role as reactor experiments enter the precision era.The positron energy spectrum of 3.5 million antineutrino inverse beta decay reactions observed by the Daya Bay experiment,in combination with the fission rates of fissile isotopes in the reactor,is used to extract the positron energy spectra resulting from the fission of specific isotopes.This information can be used to produce a precise,data-based prediction of the antineutrino energy spectrum in other reactor antineutrino experiments with different fission fractions than Daya Bay.The positron energy spectra are unfolded to obtain the antineutrino energy spectra by removing the contribution from detector response with the Wiener-SVD unfolding method.Consistent results are obtained with other unfolding methods.A technique to construct a data-based prediction of the reactor antineutrino energy spectrum is proposed and investigated.Given the reactor fission fractions,the technique can predict the energy spectrum to a 2%precision.In addition,we illustrate how to perform a rigorous comparison between the unfolded antineutrino spectrum and a theoretical model prediction that avoids the input model bias of the unfolding method.
文摘A new search for two-neutrino double-beta(2νββ)decay of^(136)Xe to the 0+1 excited state of 136Ba is performed with the full EXO-200 dataset.A deep learning-based convolutional neural network is used to discriminate signal from background events.Signal detection efficiency is increased relative to previous searches by EXO-200 by more than a factor of two.With the addition of the Phase II dataset taken with an upgraded detector,the median 90%confidence level half-life sensitivity of 2νββdecay to the 0+1 state of 136Ba is 2.9×10^(24)yr using a total^(136)Xe exposure of 234.1 kg yr.No statistically significant evidence for 2νββdecay to the 0^(+)_(1)state is observed,leading to a lower limit of T2ν1/2(0^(+)→0^(+)_(1))>1.4×10^(24)yr at 90%confidence level,improved by 70%relative to the current world's best constraint.