Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Gree...Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Green Super Rice(GSR)that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture.The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources,functional gene discoveries,and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving,environmentally friendly crop production systems.We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agricul-ture and better nourish the world population.展开更多
基金the National High Technology Research and Development Program of China(2014AA10A604)the Bill&Melinda Gates Foundation(OPP1130530)+1 种基金the Earmarked Fund for the China Agricultural Research System of China(CARS-01-06)Hubei Special Major Projects for Technological Innovation(2019ABA104,2020ABA016).
文摘Producing sufficient food with finite resources to feed the growing global population while having a smaller impact on the environment has always been a great challenge.Here,we review the concept and practices of Green Super Rice(GSR)that have led to a paradigm shift in goals for crop genetic improvement and models of food production for promoting sustainable agriculture.The momentous achievements and global deliveries of GSR have been fueled by the integration of abundant genetic resources,functional gene discoveries,and innovative breeding techniques with precise gene and whole-genome selection and efficient agronomic management to promote resource-saving,environmentally friendly crop production systems.We also provide perspectives on new horizons in genomic breeding technologies geared toward delivering green and nutritious crop varieties to further enhance the development of green agricul-ture and better nourish the world population.