期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A Diagnostic and Numerical Study on a Rainstorm in South China Induced by a Northward-Propagating Tropical System 被引量:6
1
作者 赵玉春 李泽椿 肖子牛 《Acta meteorologica Sinica》 SCIE 2008年第3期284-302,共19页
A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-mov... A strong cyclonic wind perturbation generated in the northern South China Sea (SCS) moved northward quickly and developed into a mesoscale vortex in southwest Guangdong Province, and then merged with a southward-moving shear line from mid latitudes in the period of 21-22 May 2006, during which three strong mesoscale convective systems (MCSs) formed and brought about torrential rain or even cloudburst in South China. With the 1° ×1° NCEP (National Centers for Environment Prediction) reanalysis data and the Weather and Research Forecast (WRF) mesoscale model, a numerical simulation, a potential vorticity inversion analysis, and some sensitivity experiments are carried out to reveal the formation mechanism of this rainfall event. In the meantime, conventional observations, satellite images, and the WRF model outputs are also utilized to perform a preliminary dynamic and thermodynamic diagnostic analysis of the rainstorm systems. It is found that the torrential rain occurred in favorable synoptic conditions such as warm and moist environment, low lifting condensation level, and high convective instability. The moisture transport by strong southerly winds associated with the rapid northward advance of the cyclonic wind perturbation over the northern SCS provided the warm and moist condition for the formation of the excessive rain. Under the dynamic steering of a southwesterly flow ahead of a north trough and that on the southwest side of the West Pacific subtropical high, the mesoscale vortex (or the cyclonic wind perturbation), after its genesis, moved northward and brought about enormous rain in most parts of Guangdong Province through providing certain lifting forcing for the triggering of mesoscale convection. During the development of the mesoscale vortex, heavy rainfall was to a certain extent enhanced by the mesoscale topography of the Yunwu Mountain in Guangdong. The effect of the Yunwu Mountain is found to vary under different prevailing wind directions and intensities. The location of the heavy rainfall was in a degree determined by the trumpet-shaped topography of the Zhujiang Delta. It is identified that the topographic effect on precipitation depends on the relative position between the terrain and the mesoscale storm systems. The short distance from the SCS to South China facilitates the moisture transport, which offers ease for the heavy rain to form in South China. Finally, the role played by land-sea contrast in the fast intensification of the MCSs in South China is not yet clear, and the interaction between the MCSs and the mesoscale vortex needs to be clarified as well. 展开更多
关键词 rainstorm in South China mesoscale vortex TOPOGRAPHY potential vorticity inversion mesoscale convective system (MCS)
原文传递
A Case Study on a Quasi-Stationary Meiyu Front Bringing About Continuous Rainstorms with Piecewise Potential Vorticity Inversion 被引量:3
2
作者 赵玉春 李泽椿 肖子牛 《Acta meteorologica Sinica》 SCIE 2008年第2期202-223,共22页
A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° lat... A 4-day persistent rainstorm resulting in serious flooding disasters occurred in the north of Fujian Province under the influences of a quasi-stationary Meiyu front during 5-8 June 2006. With 1°× 1° latitude and longitude NCEP reanalysis data and the ground surface rainfall, using the potential vorticity (PV) analysis and PV inversion method, the evolution of main synoptic systems, and the corresponding PV and PV perturbation (or PV anomalies) and their relationship with heavy rainfall along the Meiyu front are analyzed in order to investigate the physical mechanism of the formation, development, and maintenance of the Meiyu front. Furthermore, the PV perturbations related to different physics are separated to investigate their different roles in the formation and development of the Meiyu front. The results show: the formation and persistence of the Meiyu front in a quasi-WE orientation are mainly due to the maintenance of the high-pressure systems in its south/north sides (the West Pacific subtropical high/ the high pressure band extending from the Korean Peninsula to east of North China). The Meiyu front is closely associated with the PV in the lower troposphere. The location of the positive PV perturbation on the Meiyu front matches well with the main heavy rainfall area along the Meiyu front. The PV inversion reveals that the balanced winds satisfying the nonlinear balanced assumption represent to a large extent the real atmospheric flow and its evolution basically reflects the variation of stream flow associated with the Meiyu front. The unbalanced flow forms the convergence band of the Meiyu front and it mainly comes from the high-pressure system in the north side of the Meiyu front. The positive PV perturbation related to latent heat release in the middle-lower troposphere is one of the main factors influencing the formation and development of the Meiyu front. The positive vorticity band from the total balanced winds is in accordance with the Meiyu front band and the magnitude of the positive vorticity from the balanced wind is very close to that from real winds. The PV perturbation in the boundary layer is to a certain degree favorable for the formation and development of Meiyu front. In general, the lower boundary potential temperature perturbation is not beneficial to the formation and development, which is attributed to the relatively low surface temperature due to surface evaporation and solar short-wave radiation reduction shaded by clouds on the Meiyu front band, however, it has some diurnal variation. The effect of PV perturbation in the upper troposphere on the formation and development of the Meiuyu front is relatively weaker than others' and not beneficial to the formation and development of the Meiyu front, but it is enhanced in the period of Meiyu front's fast southward movement when the deep North China trough develops and moves southeastward. Rest PV perturbation unrelated to latent heat release in the middle-lower troposphere plays a certain role in the Meiyu front's fast southward movement. Lastly, it should be pointed out that the different PV perturbations maybe play a different role in different stages of the Meiyu front development. 展开更多
关键词 Meiyu front RAINSTORM PV (potential vorticity) inversion diabatic heating
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部