We summarized the design, fabrication challenges and important technologies for multi-wavelength laser transmitting photonic integration. Technologies discussed include multi-wavelength laser arrays, monolithic integr...We summarized the design, fabrication challenges and important technologies for multi-wavelength laser transmitting photonic integration. Technologies discussed include multi-wavelength laser arrays, monolithic integration and modularizing coupling and packaging. Fabrication technique requirements have significantly declined with the rise of reconstruction-equivalent-chirp and second nanoimprint mask technologies. The monolithic integration problem between active and passive waveguides can be overcome with Butt-joint and InP array waveguide grating technologies. The dynamic characteristics of multi-factors will be simultaneously measured with multi-port analyzing modules. The performance of photonic integration chips is significantly improved with the autoecious factors compensation packaging technique.展开更多
基金the National High-Tech Research & Development Program of China (2011AA0103)
文摘We summarized the design, fabrication challenges and important technologies for multi-wavelength laser transmitting photonic integration. Technologies discussed include multi-wavelength laser arrays, monolithic integration and modularizing coupling and packaging. Fabrication technique requirements have significantly declined with the rise of reconstruction-equivalent-chirp and second nanoimprint mask technologies. The monolithic integration problem between active and passive waveguides can be overcome with Butt-joint and InP array waveguide grating technologies. The dynamic characteristics of multi-factors will be simultaneously measured with multi-port analyzing modules. The performance of photonic integration chips is significantly improved with the autoecious factors compensation packaging technique.