期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Co_(3)O_(4)as an efficient passive NO_(x) adsorber for emission control during cold-start of diesel engines
1
作者 Jinhuang Cai Shijie Hao +3 位作者 Yun Zhang Xiaomin Wu Zhenguo Li Huawang Zhao 《Chinese Journal of Chemical Engineering》 SCIE EI CAS CSCD 2024年第2期1-7,共7页
The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a s... The Co_(3)O_(4)nanoparticles,dominated by a catalytically active(110)lattice plane,were synthesized as a low-temperature NO_(x) adsorbent to control the cold start emissions from vehicles.These nanoparticles boast a substantial quantity of active chemisorbed oxygen and lattice oxygen,which exhibited a NO_(x) uptake capacity commensurate with Pd/SSZ-13 at 100℃.The primary NO_(x) release temperature falls within a temperature range of 200-350℃,making it perfectly suitable for diesel engines.The characterization results demonstrate that chemisorbed oxygen facilitate nitro/nitrites intermediates formation,contributing to the NO_(x) storage at 100℃,while the nitrites begin to decompose within the 150-200℃range.Fortunately,lattice oxygen likely becomes involved in the activation of nitrites into more stable nitrate within this particular temperature range.The concurrent processes of nitrites decomposition and its conversion to nitrates results in a minimal NO_(x) release between the temperatures of 150-200℃.The nitrate formed via lattice oxygen mainly induces the NO_(x) to be released as NO_(2) within a temperature range of 200-350℃,which is advantageous in enhancing the NO_(x) activity of downstream NH_(3)-SCR catalysts,by boosting the fast SCR reaction pathway.Thanks to its low cost,considerable NO_(x) absorption capacity,and optimal release temperature,Co_(3)O_(4)demonstrates potential as an effective material for passive NO_(x) adsorber applications. 展开更多
关键词 Emission control COLD-START Low-temperature adsorption Co_(3)O_(4) Nitrate formation
下载PDF
Distinct effect of preparation methods on reaction efficiency of Mn-Ce/Al_(2)O_(3) catalysts in low-temperature NH_(3)-SCR
2
作者 Shijie Hao Yandi Cai +7 位作者 Wei Wei Yanan Lv Jiawei Ji Wei Tan Jingfang Sun Liwei Jia Changjin Tang Lin Dong 《Journal of Rare Earths》 SCIE EI CAS CSCD 2024年第10期1865-1872,共8页
In this study,a series of Mn-Ce/Al_(2)O_(3) catalysts was prepared by different methods of depositionprecipitation(MnCeAl-DP),impregnation(MnCeAl-IM) and citric acid(MnCeAl-CA),and the distinct effect of preparation m... In this study,a series of Mn-Ce/Al_(2)O_(3) catalysts was prepared by different methods of depositionprecipitation(MnCeAl-DP),impregnation(MnCeAl-IM) and citric acid(MnCeAl-CA),and the distinct effect of preparation methods on NO_(x) removal performance at low temperature was explored.Results show that MnCeAl-DP exhibits not only the best activity but also the highest resistance against SO_(2)/H_(2)O.With the assistance of comprehensive characterizations from scanning electron microscopy(SEM),Brunauer-Emmett-Teller(BET),X-ray diffraction(XRD),H_(2)-temperature programmed reduction(H_(2)-TPR),NH_(3)-te mperature programmed deso rption(NH_(3)-TPD),and X-ray photoelectron spectroscopy(XPS),it is revealed that the MnCeAl-DP sample owns admired features of large surface area and pore volume,enriched Mn^(4+) and chemisorbed oxygen species originating from enhanced interaction between MnO_x and CeO_(2),as well as improved adsorption capacity to NH_(3) and NO.All these factors contribute to activity enhancement.Further in-situ DRIFTS studies reveal that the improvement of NH_(3)-SCR performance over MnCeAI-DP is related to the formation of abundant nitrate species,which is beneficial to the "NH_(4)NO_(3)" reaction pathway and thus enhances low-temperature activity. 展开更多
关键词 Mn-Ce/Al_(2)O_(3)catalysts NH_(3)-SCR Low temperature NH_(4)NO_(3) Fast SCR Rare earths
原文传递
Redox behaviors and structural characteristics of Mn_(0.1)Ce_(0.9)O_x and Mn_(0.1)Ce_(0.6)Zr_(0.3)O_x 被引量:4
3
作者 贾莉伟 沈美庆 +3 位作者 王军 褚霞 王家明 胡志成 《Journal of Rare Earths》 SCIE EI CAS CSCD 2008年第4期523-527,共5页
Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.30x samples synthesized by sol-gel method were tested for redox properties through the dynamic oxygen storage measurement and characterized using X-ray diffraction, BET, electron paramag... Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.30x samples synthesized by sol-gel method were tested for redox properties through the dynamic oxygen storage measurement and characterized using X-ray diffraction, BET, electron paramagnetic resonance, and X-ray photoelectron spectroscopy. The results showed that redox performances of ceria-based materials could be enhanced by synergetic effects between Mn-O and Ce-O. Fresh and aged samples were characterized with the fluorite-type cubic structure similar to CeO2, and furthermore, the thermal stability of Mn0.1Ce0.9Ox materials was improved by the introduction of some Zr atoms. From XPS, it could be concluded that Mn^2+/Mn^3+ redox couples existed on the surface of Mn0.1Ce0.9Ox and Mn0.1Ce0.6Zr0.3Ox samples. Electron paramagnetic resonance researches revealed that there were three types of Mn^2+ species: isolated Mn^2+ substituting for Ce^4+ ions in the lattice with a cubic symmetry, ones in defect with a noncubic symmetry, and at the surface of samples. 展开更多
关键词 three-way catalyst redox properties synergetic effects rare earths
下载PDF
Enhancing low-temperature NO_x storage and reduction performance of a Pt-based lean NO_x trap catalyst 被引量:3
4
作者 Tong Wang Li-Wei Jia +3 位作者 Xiu-Ting Wang Gang Wang Fu-Qiang Luo Jia-Ming Wang 《Rare Metals》 SCIE EI CAS CSCD 2019年第1期81-86,共6页
Two lean NO_x trap(LNT) catalysts, Pt/BaO/CeO_2 + Al_2O_3 and Pt/BaO/CeO_2-Al_2O_3, were prepared and compared for low-temperature(< 250℃) NO_x storage and reduction performance. The influence of the form of ceria... Two lean NO_x trap(LNT) catalysts, Pt/BaO/CeO_2 + Al_2O_3 and Pt/BaO/CeO_2-Al_2O_3, were prepared and compared for low-temperature(< 250℃) NO_x storage and reduction performance. The influence of the form of ceria on low-temperature NO_x storage and reduction performance of LNT catalysts was investigated with the focus on NO_x storage capacity, NO_x reduction efficiency during lean/rich cycling, product selectivity and thermal stability.Inductively coupled plasma-atomic emission spectrometry(ICP-AES), Brunner-Emmet-T eller(BET), H_2-pulse chemisorption and X-ray diffraction(XRD) were conducted to characterize the physical properties of LNT catalysts. NO_x storage capacity and NO_x conversion efficiency were measured to evaluate NO_x storage and reduction performance of LNT catalysts. Pt/BaO/CeO_2-Al_2O_3 catalyst exhibits higher NO_x storage capacity than Pt/BaO/CeO_2 + Al_2O_3 catalyst in the temperature range of 150-250 ℃. Meanwhile, Pt/BaO/CeO_2-Al_2O_3 catalyst shows better NO_x conversion efficiency and N_2 selectivity. XRD results indicate that the thermal stability of CeO_2-Al_2O_3 complex oxide is superior to that of pure CeO_2. H_2-pulse chemisorption results show that Pt/BaO/CeO_2-Al_2O_3 catalyst has higher Pt dispersion than Pt/BaO/CeO_2 + Al_2O_3 catalyst over fresh and aged samples. The improved physical properties of Pt/BaO/CeO_2-Al_2O_3 catalyst are attributed to enhance the NOx storage and reduction performance over Pt/BaO/CeO_2 + Al_2O_3 catalyst. 展开更多
关键词 NOx storage and REDUCTION Low temperature CERIA Ceria-alumina LNT
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部