Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morpho- genesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis ...Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morpho- genesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis in many tissues. Wnts bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor and a low-density lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of signaling cascades that include the canonical/beta-catenin pathway as well as several noncanonical pathways. In recent years, canonical Wnt signaling has been reported to play a significant role in the control of bone formation. Clinical studies have found that mutations in LRP-5 are associated with reduced bone mineral density (BMD) and fractures. Investigations of knockout and transgenic mouse models of Wnt pathway components have shown that canonical Wnt signaling modulates most aspects ofosteoblast physiology including proliferation, differentiation, function and apoptosis. Transgenic mice expressing a gain of function mutant of LRP-5 in bone, or mice lacking the Wnt antagonist secreted frizzled-related protein-l, exhibit elevated BMD and suppressed osteoblast apoptosis. In addition, preclinical studies with pharmacologic compounds such as those that inhibit glycogen synthase kinase-3β support the importance of the canonical Wnt pathway in modulation of bone formation and osteoblast apoptosis.展开更多
As part of our efforts to identify novel contraceptive targets in the epididymis we performed transcriptional profiling on each of the 10 and 19 segments of the mouse and rat epididymidis, respectively, using Affymetr...As part of our efforts to identify novel contraceptive targets in the epididymis we performed transcriptional profiling on each of the 10 and 19 segments of the mouse and rat epididymidis, respectively, using Affymetrix whole genome microarrays. A total of 17 096 and 16 360 probe sets representing transcripts were identified as being expressed in the segmented mouse and rat epididymal transcriptomes, respectively. Comparison of the expressed murine transcripts against a mouse transcriptional profiling database derived from 22 other mouse tissues identified 77 transcripts that were expressed uniquely in the epididymis. The expression of these genes was further evaluated by reverse transcription polymerase chain reaction (RT-PCR) analysis of RNA from 21 mouse tissues. RT-PCR analysis confirmed epididymis-specific expression of Defensin Beta 13 and identified two additional genes with expression restricted only to the epididymis and testis. Comparison of the 16 360 expressed transcripts in the rat epididymis with data of 21 other tissues from a rat transcriptional profiling database identified 110 transcripts specific for the epididymis. Sixty-two of these transcripts were further investigated by qPCR analysis. Only Defensin 22 (E3 epididymal protein) was shown to be completely specific for the epididymis. In addition, 14 transcripts showed more than 100-fold selective expression in the epididymis. The products of these genes might play important roles in epididymal and/or sperm function and further investigation and validation as contraceptive targets are warranted. The results of the studies described in this report are available at the Mammalian Reproductive Genetics (MRG) Database (http://mrg. genetics.washington.edu/). (Asian J Androl 2007July; 9: 522-527)展开更多
文摘Wnts are a large family of growth factors that mediate essential biological processes like embryogenesis, morpho- genesis and organogenesis. These proteins also play a role in oncogenesis, and they regulate apoptosis in many tissues. Wnts bind to a membrane receptor complex comprised of a frizzled (FZD) G-protein-coupled receptor and a low-density lipoprotein (LDL) receptor-related protein (LRP). The formation of this ligand-receptor complex initiates a number of signaling cascades that include the canonical/beta-catenin pathway as well as several noncanonical pathways. In recent years, canonical Wnt signaling has been reported to play a significant role in the control of bone formation. Clinical studies have found that mutations in LRP-5 are associated with reduced bone mineral density (BMD) and fractures. Investigations of knockout and transgenic mouse models of Wnt pathway components have shown that canonical Wnt signaling modulates most aspects ofosteoblast physiology including proliferation, differentiation, function and apoptosis. Transgenic mice expressing a gain of function mutant of LRP-5 in bone, or mice lacking the Wnt antagonist secreted frizzled-related protein-l, exhibit elevated BMD and suppressed osteoblast apoptosis. In addition, preclinical studies with pharmacologic compounds such as those that inhibit glycogen synthase kinase-3β support the importance of the canonical Wnt pathway in modulation of bone formation and osteoblast apoptosis.
文摘As part of our efforts to identify novel contraceptive targets in the epididymis we performed transcriptional profiling on each of the 10 and 19 segments of the mouse and rat epididymidis, respectively, using Affymetrix whole genome microarrays. A total of 17 096 and 16 360 probe sets representing transcripts were identified as being expressed in the segmented mouse and rat epididymal transcriptomes, respectively. Comparison of the expressed murine transcripts against a mouse transcriptional profiling database derived from 22 other mouse tissues identified 77 transcripts that were expressed uniquely in the epididymis. The expression of these genes was further evaluated by reverse transcription polymerase chain reaction (RT-PCR) analysis of RNA from 21 mouse tissues. RT-PCR analysis confirmed epididymis-specific expression of Defensin Beta 13 and identified two additional genes with expression restricted only to the epididymis and testis. Comparison of the 16 360 expressed transcripts in the rat epididymis with data of 21 other tissues from a rat transcriptional profiling database identified 110 transcripts specific for the epididymis. Sixty-two of these transcripts were further investigated by qPCR analysis. Only Defensin 22 (E3 epididymal protein) was shown to be completely specific for the epididymis. In addition, 14 transcripts showed more than 100-fold selective expression in the epididymis. The products of these genes might play important roles in epididymal and/or sperm function and further investigation and validation as contraceptive targets are warranted. The results of the studies described in this report are available at the Mammalian Reproductive Genetics (MRG) Database (http://mrg. genetics.washington.edu/). (Asian J Androl 2007July; 9: 522-527)