Recently,mega Low Earth Orbit(LEO)Satellite Network(LSN)systems have gained more and more attention due to low latency,broadband communications and global coverage for ground users.One of the primary challenges for LS...Recently,mega Low Earth Orbit(LEO)Satellite Network(LSN)systems have gained more and more attention due to low latency,broadband communications and global coverage for ground users.One of the primary challenges for LSN systems with inter-satellite links is the routing strategy calculation and maintenance,due to LSN constellation scale and dynamic network topology feature.In order to seek an efficient routing strategy,a Q-learning-based dynamic distributed Routing scheme for LSNs(QRLSN)is proposed in this paper.To achieve low end-toend delay and low network traffic overhead load in LSNs,QRLSN adopts a multi-objective optimization method to find the optimal next hop for forwarding data packets.Experimental results demonstrate that the proposed scheme can effectively discover the initial routing strategy and provide long-term Quality of Service(QoS)optimization during the routing maintenance process.In addition,comparison results demonstrate that QRLSN is superior to the virtual-topology-based shortest path routing algorithm.展开更多
基金co-supported by the National Natural Science Foundation of China(No.U20B2056)the office of Military and Civilian Integration Devel-opment Committee of Shanghai(No.2020-jmrh1-kj25)the X LAB Joint Innovation Foundation with the Second Academy of CASIC(No.21GFC-JJ02-322)。
文摘Recently,mega Low Earth Orbit(LEO)Satellite Network(LSN)systems have gained more and more attention due to low latency,broadband communications and global coverage for ground users.One of the primary challenges for LSN systems with inter-satellite links is the routing strategy calculation and maintenance,due to LSN constellation scale and dynamic network topology feature.In order to seek an efficient routing strategy,a Q-learning-based dynamic distributed Routing scheme for LSNs(QRLSN)is proposed in this paper.To achieve low end-toend delay and low network traffic overhead load in LSNs,QRLSN adopts a multi-objective optimization method to find the optimal next hop for forwarding data packets.Experimental results demonstrate that the proposed scheme can effectively discover the initial routing strategy and provide long-term Quality of Service(QoS)optimization during the routing maintenance process.In addition,comparison results demonstrate that QRLSN is superior to the virtual-topology-based shortest path routing algorithm.