The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for unders...The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching;thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 lm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.展开更多
Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanopart...Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanoparticles(NPs)embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL.The Co zeolitic imidazolate framework(ZIF-67)nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber(WF-S),yielding one-dimensional(1-D)structured composite(ZIF-67/WF-S).Subsequently,Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers(Co^(R)NC/SMCNF)through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor.Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs,and Co^(0) with Co-N_xdual active sites,the resulting Co^(R)NC/SMCNF catalyst shows brilliant catalytic activity(206 h^(-1) turnover frequency).Additionally,the strong metal-support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers,and thus increasing the reusability of the Co^(R)NC/SMCNF catalyst(reusable nine times without notable activity loss).展开更多
We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can...We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a high- resolution tomography scan within a short period of time, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. The image phase-retrieval procedure has been implemented to enhance the image contrast. We systematically investigated the effects of particle shape and aspect ratio on the structural properties including packing density and contact number. It turns out that large aspect ratio rod packings will have wider distributions of free volume fraction and larger mean contact numbers.展开更多
A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self...A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.展开更多
The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to...The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to controllably create the high-density interface of double sites for optimal synergistic effect.Herein, we reported a simple chemical oxidation-induced surface reconfiguration strategy to obtain the interface-rich Fe_(3)O_(4)-FeS nanoarray supported on iron foam(Fe_(3)O_(4)-FeS/IF) using FeS nanosheets as precursors. The abundant Fe_(3)O_(4)-FeS interfaces could improve the dispersion of active sites and facilitate the electron transfer, leading to enhanced hydrogen evolution efficiency. And meanwhile, by altering the oxidation temperature, the content of S and O could be effectively controlled, further achieving the ratio optimization of Fe_(3)O_(4)to FeS. Synchrotron-based X-ray absorption near-edge structure, X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy consistently confirm the changes of electronic structure and d-band center of Fe_(3)O_(4)-FeS after chemical oxidation. Consequently, Fe_(3)O_(4)-FeS/IF exhibits excellent alkaline HER activity with a low overpotential of 120.8 mV to reach 20 mA cm^(-2),and remains stable ranging from 10, 20 to 50 mA cm^(-2) for each 20 h, respectively. Therefore, the facile and controllable chemical oxidation may be an effective strategy for designing high-density interfaces of transition metal-based sulfides towards alkaline HER.展开更多
Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure...Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure and ion dynamics of magnesium bis(trifluoromethanesulfonyl)imide(Mg(TFSI)_(2))aqueous electrolyte at 1,2,and 3 m concentrations are investigated.From AIMD and CMD simulations,the first solvation shell of an Mg;ion is found to be composed of six water molecules in an octahedral configuration and the solvation shell is rather rigid.The TFSI^(-)ions prefer to stay in the second solvation shell and beyond.Meanwhile,the comparable diffusion coefficients of positive and negative ions in Mg(TFSI)_(2)aqueous electrolytes have been observed,which is mainly due to the formation of the stable[Mg(H_(2)O_(6))_(2)]^(+)complex,and,as a result,the increased effective Mg ion size.Finally,the calculated correlated transference numbers are lower than the uncorrelated ones even at the low concentration of 2 and 3 m,suggesting the enhanced correlations between ions in the multivalent electrolytes.This work provides a molecular-level understanding of how the solvation structure and multivalency of the ion affect the dynamics and transport properties of the multivalent electrolyte,providing insight for rational designs of electrolytes for improved ion transport properties.展开更多
Nanostructuring, structure distortion, and/or disorder are the main manipulation techniques to reduce the lattice thermal conductivity and improve the figure of merit of thermoelectric materials. A single-phase α-MgA...Nanostructuring, structure distortion, and/or disorder are the main manipulation techniques to reduce the lattice thermal conductivity and improve the figure of merit of thermoelectric materials. A single-phase α-MgAgSb sample, MgAg0.97Sb0.99, with high thermoelectric performance in near room temperature region was synthesized through a high-energy ball milling with a hot-pressing method. Here, we report the average grain size of 24–28 nm and the accurate structure distortion, which are characterized by high-resolution neutron diffraction and synchrotron x-ray diffraction with Rietveld refinement data analysis. Both the small grain size and the structure distortion have a contribution to the low lattice thermal conductivity in MgAg0.97Sb0.99.展开更多
In this paper we demonstrated a method to reconstruct vector-valued lattice distortion fields within nanoscale crystals by optimization of a forward model of multi-reflection Bragg coherent diffraction imaging(MR-BCDI...In this paper we demonstrated a method to reconstruct vector-valued lattice distortion fields within nanoscale crystals by optimization of a forward model of multi-reflection Bragg coherent diffraction imaging(MR-BCDI)data.The method flexibly accounts for geometric factors that arise when making BCDI measurements,is amenable to efficient inversion with modern optimization toolkits,and allows for globally constraining a single image reconstruction to multiple Bragg peak measurements.This is enabled by a forward model that emulates the multiple Bragg peaks of a MR-BCDI experiment from a single estimate of the 3D crystal sample.We present this forward model,we implement it within the stochastic gradient descent optimization framework,and we demonstrate it with simulated and experimental data of nanocrystals with inhomogeneous internal lattice displacement.We find that utilizing a global optimization approach to MR-BCDI affords a reliable path to convergence of data which is otherwise challenging to reconstruct.展开更多
High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel...High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel during secondary recrystallization process, an in situ experiment using hi gh energy X-ray diffraction was designed. The results showed that the secondary recrystallization began when the heating temperature was 1,494 K, and the grains grew rapidly above this temperature. With an increase in annealing temperature, the large grains with 7 orientation [〈111〉//normal direction] formed and gradually occupied the dominant position. As the annealing temperature increased even further, the grains with Goss orientation to a very large size by devouring the 7 orientation grains that formed in the early annealing stage. A single crystal with a Goss orientation was observed in the GO silicon steel when the annealing temperature was 1,540 K.展开更多
High-energy synchrotron diffraction offers great potential for experimental study of recrystallization kinetics. An experimental design to study the recrystallization mechanism of interstitial-free (IF) steel was im...High-energy synchrotron diffraction offers great potential for experimental study of recrystallization kinetics. An experimental design to study the recrystallization mechanism of interstitial-free (IF) steel was implemented. The whole annealing process of cold-rolled IF steel with 80% reduction was observed in situ using high-energy X-ray diffraction (HEXRD). The results show how the main texture component of IF steel change, i.e. the α [∥rolling direction (RD)] fiber texture decreases and the γ [∥normal direction (ND)] fiber texture increases. The important part of the α fiber texture is that both the {100} and {112} texture decrease at the beginning of recrystallization. The γ fiber texture increases at the early stage of recrystallization which stems from the increase of {111}. Nevertheless, the {111} does not change after recrystallization. The dynamic evolution of the main texture components {100}, {112}, {111} and {111} is given by in-situ HEXRD.展开更多
Third generation synchrotron X-rays provide an unprecedented opportu- nity for microstructural characterization of many engineering materials as well as natural materials. This article demonstrates the usage of three ...Third generation synchrotron X-rays provide an unprecedented opportu- nity for microstructural characterization of many engineering materials as well as natural materials. This article demonstrates the usage of three techniques for the study of structural materials: differential-aperture X-ray microscopy (DAXM), three-dimensional X- ray diffraction (3DXRD), and simultaneous wide angle/small angle X-ray scattering (WAXS/SAXS). DAXM is able to measure the 3D grain structure in polycrystalline materials with high spatial and angular resolution. In a deformed material, streaked diffraction peaks can be used to analyze local dislocation content in individual grains. Compared to DAXM, 3DXRD is able to map grains in bulk materials more quickly at the expense of spatial resolution. It is very useful for studying evolving microstructures when the materials are under deformation. WAXS/SAXS is suitable for studying materials with inhomogeneous structure, such as precipitate strengthened alloys. Structural informa- tion revealed by WAXS and SAXS can be combined for a deeper insight into material behavior. Future development and applications of these three techniques will also be discussed.展开更多
Sodium-ion batteries(SIBs)have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems.However,SIB electrode materials,in general,have inferior performance...Sodium-ion batteries(SIBs)have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems.However,SIB electrode materials,in general,have inferior performance than their lithium counterparts because Nat is larger and heavier than Lit.Heterostructure engineering is a promising strategy to overcome this intrinsic limitation and achieve practical SIBs.We provide a brief review of recent progress in heterostructure engineering of electrode materials and research on how the phase interface influences Nat storage and transport properties.Efficient strategies for the design and fabrication of heterostructures(in situ methods)are discussed,with a focus on the heterostructure formation mechanism.The heterostructure's influence on Nat storage and transport properties arises primarily from local distortions of the structure and chemomechanical coupling at the phase interface,which may accelerate ion/electron diffusion,create additional active sites,and bolster structural stability.Finally,we offer our perspectives on the existing challenges,knowledge gaps,and opportunities for the advancement of heterostructure engineering as a means to develop practical,highperformance sodium-ion batteries.展开更多
The development of novel single-atom catalysts is important for highly efficient electrochemical catalysis and sensing.In this work,a novel Pt single atoms(SAs)supported on Ni_(6)Co_(1)layered double hydroxides/nitrog...The development of novel single-atom catalysts is important for highly efficient electrochemical catalysis and sensing.In this work,a novel Pt single atoms(SAs)supported on Ni_(6)Co_(1)layered double hydroxides/nitrogen-doped graphene(Pt_(1)/Ni_(6)Co_(1)LDHs/NG)was constructed for electrochemical enzyme-free catalysis and sensing towards glucose.The loading of Pt single atoms increases with doping of Co atoms that generate more anchoring sites for Pt SAs.The resulting Pt_(1)/Ni_(6)Co_(1)LDHs/NG exhibits low oxidative potential of 0.440 V with high sensitivity of 273.78μA·mM^(−1)·cm^(−2)toward glucose,which are 85 mV lower and 15 times higher than those of Ni(OH)_(2),respectively.Pt_(1)/Ni_(6)Co_(1)LDHs/NG also shows excellent selectivity and great stability during 5-week testing.Theoretical and experimental results show that the boosted performance of Pt_(1)/Ni_(6)Co_(1)LDHs/NG originates from its stronger binding energy with glucose and the synergistic effect of Pt SAs,Co doping,and NG.This work provides a general strategy of designing highly active SACs for extending their application in electrochemical sensing.展开更多
Single-atom catalyst(SAC)is one of the newest catalysts,and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability.We designed and ...Single-atom catalyst(SAC)is one of the newest catalysts,and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability.We designed and synthesized a Fe-N decorated graphene nanosheet(Fe-N5/GN SAC)with the coordination number of five.Through enzymology and theoretical calculations,the Fe-N5/GN SAC has outstanding intrinsic peroxidase-like catalytic activity due to single-atom Fe site with five-N-coordination structure.We explored its potential on lung cancer therapy,and found that it could kill human lung adenocarcinoma cells(A549)by decomposing hydrogen peroxide(H_(2)O_(2))into toxic reactive oxygen species(ROS)under acidic microenvironment in threedimensional(3D)lung cancer cell model.Our study demonstrates a promising application of SAC with highly efficient single-atom catalytic sites for cancer treatment.展开更多
As our transportation infrastructure ages,its deterioration is becoming a growing concern.Rapid and effective methods for repair can reduce the need for time-and cost-intensive replacement of structures such as roadwa...As our transportation infrastructure ages,its deterioration is becoming a growing concern.Rapid and effective methods for repair can reduce the need for time-and cost-intensive replacement of structures such as roadway bridges.In this work,laser-based additive manufacturing(AM)was developed for the repair of damaged beams in steel bridges.A corroded structural beam of low-carbon A36 steel was selected for this case study and 316L stainless steel was used for repair due to its excellent mechanical properties and corrosion resistance.Simulated repair experiments were performed on specimens extracted from the beam,and prepared with various groove shapes(Rectangular,Trapezoidal,and U-shaped).More in-depth parametric and microstructural studies were carried out with a series of U-shaped specimens repaired with the linear laser input energy varied from 19.5 to 30.0 J mm–1.The tensile properties of the repaired specimens and interface structures were also investigated in detail.It was found that the repaired specimens had a slightly higher tensile strength despite a reduction in tensile elongation compared to the A36 steel base metal.The influence of interfacial microstructure and heterogeneity on the mechanical properties of the repaired specimens was discussed.Our work suggests the promising potential to employ AM for structural repair and provides fundamental insights into processing-structure-property relationships in laser AM-repaired materials.展开更多
The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties,such as viscoelasticity.Small-angle X-ray Photon Correlation Spectroscopy(SA-XPCS)can probe the spontaneou...The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties,such as viscoelasticity.Small-angle X-ray Photon Correlation Spectroscopy(SA-XPCS)can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges(10−6–103 s/10−10–10−6 m).Tailored material design,however,requires searching through a massive number of sample compositions and experimental parameters,which is beyond the bandwidth of the current coherent X-ray beamline.Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source,we demonstrated the consistency between the Brownian dynamics of~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary.The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles.This closed-loop,AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence,and is a first step towards high-throughput,autonomous material discovery.展开更多
Point-of-care(POC)detection of herbicides is of great importance due to their impact on the environment and potential risks to human health.Here,we design a single-atomic site catalyst(SASC)with excellent peroxidase-l...Point-of-care(POC)detection of herbicides is of great importance due to their impact on the environment and potential risks to human health.Here,we design a single-atomic site catalyst(SASC)with excellent peroxidase-like(POD-like)catalytic activity,which enhances the detection performance of corresponding lateral flow immunoassay(LFIA).The iron single-atomic site catalyst(Fe-SASC)is synthesized from hemin-doped ZIF-8,creating active sites that mimic the Fe active center coordination environment of natural enzyme and their functions.Due to its atomically dispersed iron active sites that result in maximum utilization of active metal atoms,the Fe-SASC exhibits superior POD-like activity,which has great potential to replace its natural counterparts.Also,the catalytic mechanism of Fe-SASC is systematically investigated.Utilizing its outstanding catalytic activity,the Fe-SASC is used as label to construct LFIA(Fe-SASC-LFIA)for herbicide detection.The 2,4-dichlorophenoxyacetic acid(2,4-D)is selected as a target here,since it is a commonly used herbicide as well as a biomarker for herbicide exposure evaluation.A linear detection range of 1-250 ng/mL with a low limit of detection(LOD)of 0.82 ng/mL has been achieved.Meanwhile,excellent specificity and selectivity towards 2,4-D have been obtained.The outstanding detection performance of the Fe-SASC-LFIA has also been demonstrated in the detection of human urine samples,indicating the practicability of this POC detection platform for analyzing the 2,4-D exposure level of a person.We believe this proposed Fe-SASC-LFIA has potential as a portable,rapid,and high-sensitive POC detection strategy for pesticide exposure evaluation.展开更多
基金the National Natural Science Foundation of China (41574080 and U1530402).
文摘The lower mantle makes up more than a half of our planet’s volume. Mineralogical and petrological experiments on realistic bulk compositions under high pressure–temperature (P–T) conditions are essential for understanding deep mantle processes. Such high P–T experiments are commonly conducted in a laser-heated diamond anvil cell, producing a multiphase assemblage consisting of 100 nm to submicron crystallite grains. The structures of these lower mantle phases often cannot be preserved upon pressure quenching;thus, in situ characterization is needed. The X-ray diffraction (XRD) pattern of such a multiphase assemblage usually displays a mixture of diffraction spots and rings as a result of the coarse grain size relative to the small X-ray beam size (3–5 lm) available at the synchrotron facilities. Severe peak overlapping from multiple phases renders the powder XRD method inadequate for indexing new phases and minor phases. Consequently, structure determination of new phases in a high P–T multiphase assemblage has been extremely difficult using conventional XRD techniques. Our recent development of multigrain XRD in high-pressure research has enabled the indexation of hundreds of individual crystallite grains simultaneously through the determination of crystallographic orientations for these individual grains. Once indexation is achieved, each grain can be treated as a single crystal. The combined crystallographic information from individual grains can be used to determine the crystal structures of new phases and minor phases simultaneously in a multiphase system. With this new development, we have opened up a new area of crystallography under the high P–T conditions of the deep lower mantle. This paper explains key challenges in studying multiphase systems and demonstrates the unique capabilities of high-pressure multigrain XRD through successful examples of its applications.
基金financially supported by the National Key Research and Development Program of China(2018YFB1105100)the National Natural Science Foundation of China(51974339 and 51674270)the funding from Science Foundation of China University of Petroleum,Beijing(24620188JC005)。
文摘Developing a highly active and durable non-noble metal catalyst for aqueous-phase levulinic acid(LA)hydrogenation to g-valerolactone(GVL)is an appealing yet challenging task.Herein,we report well-dispersed Co nanoparticles(NPs)embedded in nitrogen-doped mesoporous carbon nanofibers as an efficient catalyst for aqueous-phase LA hydrogenation to GVL.The Co zeolitic imidazolate framework(ZIF-67)nanocrystals were anchored on the sodium dodecyl sulfate modified wipe fiber(WF-S),yielding one-dimensional(1-D)structured composite(ZIF-67/WF-S).Subsequently,Co NPs were uniformly embedded in nitrogen-doped mesoporous carbon nanofibers(Co^(R)NC/SMCNF)through a pyrolysis-reduction strategy using ZIF-67/WF-S as the precursor.Benefiting from introducing modified wipe fiber WF-S to enhance the dispersion of Co NPs,and Co^(0) with Co-N_xdual active sites,the resulting Co^(R)NC/SMCNF catalyst shows brilliant catalytic activity(206 h^(-1) turnover frequency).Additionally,the strong metal-support interactions greatly inhibited the Co NPs from aggregation and leaching from the mesoporous carbon nanofibers,and thus increasing the reusability of the Co^(R)NC/SMCNF catalyst(reusable nine times without notable activity loss).
基金Project supported by the National Natural Science Foundation of China(Grant No.11175121)the National Basic Research Program of China(GrantNo.2010CB834301)supported by the U.S.DOE(Grant No.DE-AC02-06CH11357)
文摘We present a fast synchrotron X-ray tomography study of the packing structures of rods with different aspect ratios. Utilizing the high flux of the X-rays generated from the third-generation synchrotron source, we can complete a high- resolution tomography scan within a short period of time, after which the three-dimensional (3D) packing structure can be obtained for the subsequent structural analysis. The image phase-retrieval procedure has been implemented to enhance the image contrast. We systematically investigated the effects of particle shape and aspect ratio on the structural properties including packing density and contact number. It turns out that large aspect ratio rod packings will have wider distributions of free volume fraction and larger mean contact numbers.
基金the supports by the Fundamental Research Program of the Korea Institute of Materials Science(KIMS,PNK7760)。
文摘A multiscale crystal plasticity model accounting for temperature-dependent mechanical behaviors without introducing a larger number of unknown parameters was developed.The model was implemented in elastic-plastic self-consistent(EPSC)and crystal plasticity finite element(CPFE)frameworks for grain-scale simulations.A computationally efficient EPSC model was first employed to estimate the critical resolved shear stress and hardening parameters of the slip and twin systems available in a hexagonal close-packed magnesium alloy,ZEK100.The constitutive parameters were thereafter refined using the CPFE.The crystal plasticity frameworks incorporated with the temperature-dependent constitutive model were used to predict stress–strain curves in macroscale and lattice strains in microscale at different testing temperatures up to 200℃.In particular,the predictions by the crystal plasticity models were compared with the measured lattice strain data at the elevated temperatures by in situ high-energy X-ray diffraction,for the first time.The comparison in the multiscale improved the fidelity of the developed temperature-dependent constitutive model and validated the assumption with regard to the temperature dependency of available slip and twin systems in the magnesium alloy.Finally,this work provides a time-efficient and precise modeling scheme for magnesium alloys at elevated temperatures.
基金financially supported by National Natural Science Foundation of China (52174283)the Qingdao Science and Technology Benefiting People Special Project (20-3-4-8-nsh)+1 种基金the Fundamental Research Funds for the Central Universities(20CX02212A)the Development Fund of State Key Laboratory of Heavy Oil Processing and the Postgraduate Innovation Project of China University of Petroleum (YCX2020042)。
文摘The rational design of double active sites system is vital for constructing high-efficiency iron sulfides electrocatalysts towards hydrogen evolution reaction(HER) in alkaline media. However, it remains a challenge to controllably create the high-density interface of double sites for optimal synergistic effect.Herein, we reported a simple chemical oxidation-induced surface reconfiguration strategy to obtain the interface-rich Fe_(3)O_(4)-FeS nanoarray supported on iron foam(Fe_(3)O_(4)-FeS/IF) using FeS nanosheets as precursors. The abundant Fe_(3)O_(4)-FeS interfaces could improve the dispersion of active sites and facilitate the electron transfer, leading to enhanced hydrogen evolution efficiency. And meanwhile, by altering the oxidation temperature, the content of S and O could be effectively controlled, further achieving the ratio optimization of Fe_(3)O_(4)to FeS. Synchrotron-based X-ray absorption near-edge structure, X-ray photoelectron spectroscopy and ultraviolet photoemission spectroscopy consistently confirm the changes of electronic structure and d-band center of Fe_(3)O_(4)-FeS after chemical oxidation. Consequently, Fe_(3)O_(4)-FeS/IF exhibits excellent alkaline HER activity with a low overpotential of 120.8 mV to reach 20 mA cm^(-2),and remains stable ranging from 10, 20 to 50 mA cm^(-2) for each 20 h, respectively. Therefore, the facile and controllable chemical oxidation may be an effective strategy for designing high-density interfaces of transition metal-based sulfides towards alkaline HER.
基金supported by the Joint Center for Energy Storage Research(JCESR),a U.S.Department of Energy,Energy Innovation Hub。
文摘Using ab initio molecular dynamics(AIMD)simulations,classical molecular dynamics(CMD)simulations,small-angle X-ray scattering(SAXS),and pulsed-field gradient nuclear magnetic resonance(PFG-NMR),the solvation structure and ion dynamics of magnesium bis(trifluoromethanesulfonyl)imide(Mg(TFSI)_(2))aqueous electrolyte at 1,2,and 3 m concentrations are investigated.From AIMD and CMD simulations,the first solvation shell of an Mg;ion is found to be composed of six water molecules in an octahedral configuration and the solvation shell is rather rigid.The TFSI^(-)ions prefer to stay in the second solvation shell and beyond.Meanwhile,the comparable diffusion coefficients of positive and negative ions in Mg(TFSI)_(2)aqueous electrolytes have been observed,which is mainly due to the formation of the stable[Mg(H_(2)O_(6))_(2)]^(+)complex,and,as a result,the increased effective Mg ion size.Finally,the calculated correlated transference numbers are lower than the uncorrelated ones even at the low concentration of 2 and 3 m,suggesting the enhanced correlations between ions in the multivalent electrolytes.This work provides a molecular-level understanding of how the solvation structure and multivalency of the ion affect the dynamics and transport properties of the multivalent electrolyte,providing insight for rational designs of electrolytes for improved ion transport properties.
基金Project supported by the National Natural Science Foundation of China(Grant No.11675255)the National Key R&D Program of China(Grant No.2016YFA0401503).
文摘Nanostructuring, structure distortion, and/or disorder are the main manipulation techniques to reduce the lattice thermal conductivity and improve the figure of merit of thermoelectric materials. A single-phase α-MgAgSb sample, MgAg0.97Sb0.99, with high thermoelectric performance in near room temperature region was synthesized through a high-energy ball milling with a hot-pressing method. Here, we report the average grain size of 24–28 nm and the accurate structure distortion, which are characterized by high-resolution neutron diffraction and synchrotron x-ray diffraction with Rietveld refinement data analysis. Both the small grain size and the structure distortion have a contribution to the low lattice thermal conductivity in MgAg0.97Sb0.99.
基金The development of the MR-BCDI forward model and inversion approach,experimental demonstration,and design and fabrication of the SiC nanoparticles was supported by the U.S.Department of Energy(DOE),Office of Science,Basic Energy Sciences,Materials Science and Engineering Division.Additional support for materials preparation came from the Q-NEXT Quantum Center,a U.S.Department of Energy,Office of Science,National Quantum Information Science Research Center,under Award Number DE-FOA-0002253Silicon carbide deterministic nanoparticle fabrication and SEM characterization work was performed under proposals 72483 and 775514 in the Center for Nanoscale Materials clean room.Work performed at the Center for Nanoscale Materials,a U.S+3 种基金Department of Energy Office of Science User Facility,was supported by the U.S.DOE,Office of Basic Energy Sciences,under Contract No.DE-AC02-06CH11357Refinement of the geometric,computational and optimization concepts was supported by the European Research Council(European Union’s Horizon H2020 research and innovation program grant agreement No.724881).Generation of the simulated structures and the BCDI data acquisition was supported by the Laboratory Directed Research and Development(LDRD)funding from Argonne National Laboratory,provided by the Director,Office of Science,of the U.S.Department of Energy under Contract No.DE-AC02-06CH11357This research uses the resources of the Advanced Photon Source,a U.S.DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract No.DE-AC02-06CH11357The authors gratefully acknowledge numerous valuable discussions with Drs.Anthony Rollett,Robert Suter and Matthew Wilkin(Carnegie Mellon University),Nicholas Porter and Dr.Richard Sandberg(Brigham Young University),Dr.Ross Harder(Argonne National Laboratory)and Dr.Anastasios Pateras(DESY).The authors gratefully acknowledge numerous valuable discussions and experimental guidance from Dr.David A.Czaplewski,Suzanne Miller,and Dr.Ralu Divan of the Center of Nanoscale Materials.
文摘In this paper we demonstrated a method to reconstruct vector-valued lattice distortion fields within nanoscale crystals by optimization of a forward model of multi-reflection Bragg coherent diffraction imaging(MR-BCDI)data.The method flexibly accounts for geometric factors that arise when making BCDI measurements,is amenable to efficient inversion with modern optimization toolkits,and allows for globally constraining a single image reconstruction to multiple Bragg peak measurements.This is enabled by a forward model that emulates the multiple Bragg peaks of a MR-BCDI experiment from a single estimate of the 3D crystal sample.We present this forward model,we implement it within the stochastic gradient descent optimization framework,and we demonstrate it with simulated and experimental data of nanocrystals with inhomogeneous internal lattice displacement.We find that utilizing a global optimization approach to MR-BCDI affords a reliable path to convergence of data which is otherwise challenging to reconstruct.
基金supported by the Key Projects of the National Science & Technology Pillar Program (No. 2011BAE13B03)the Fundamental Research Funds for the Central Universities (No. N110502001)
文摘High energy synchrotron diffraction offers great potential to study the recrystallization kinetics of metallic materials. To study the formation of Goss texture ({ [10}(001)) of grain oriented (GO) silicon steel during secondary recrystallization process, an in situ experiment using hi gh energy X-ray diffraction was designed. The results showed that the secondary recrystallization began when the heating temperature was 1,494 K, and the grains grew rapidly above this temperature. With an increase in annealing temperature, the large grains with 7 orientation [〈111〉//normal direction] formed and gradually occupied the dominant position. As the annealing temperature increased even further, the grains with Goss orientation to a very large size by devouring the 7 orientation grains that formed in the early annealing stage. A single crystal with a Goss orientation was observed in the GO silicon steel when the annealing temperature was 1,540 K.
基金Sponsored by Key Projects in National Science and Technology Pillar Program of China(2011BAE13B03)Fundamental Research Funds for Central Universities of China(N110502001)
文摘High-energy synchrotron diffraction offers great potential for experimental study of recrystallization kinetics. An experimental design to study the recrystallization mechanism of interstitial-free (IF) steel was implemented. The whole annealing process of cold-rolled IF steel with 80% reduction was observed in situ using high-energy X-ray diffraction (HEXRD). The results show how the main texture component of IF steel change, i.e. the α [∥rolling direction (RD)] fiber texture decreases and the γ [∥normal direction (ND)] fiber texture increases. The important part of the α fiber texture is that both the {100} and {112} texture decrease at the beginning of recrystallization. The γ fiber texture increases at the early stage of recrystallization which stems from the increase of {111}. Nevertheless, the {111} does not change after recrystallization. The dynamic evolution of the main texture components {100}, {112}, {111} and {111} is given by in-situ HEXRD.
文摘Third generation synchrotron X-rays provide an unprecedented opportu- nity for microstructural characterization of many engineering materials as well as natural materials. This article demonstrates the usage of three techniques for the study of structural materials: differential-aperture X-ray microscopy (DAXM), three-dimensional X- ray diffraction (3DXRD), and simultaneous wide angle/small angle X-ray scattering (WAXS/SAXS). DAXM is able to measure the 3D grain structure in polycrystalline materials with high spatial and angular resolution. In a deformed material, streaked diffraction peaks can be used to analyze local dislocation content in individual grains. Compared to DAXM, 3DXRD is able to map grains in bulk materials more quickly at the expense of spatial resolution. It is very useful for studying evolving microstructures when the materials are under deformation. WAXS/SAXS is suitable for studying materials with inhomogeneous structure, such as precipitate strengthened alloys. Structural informa- tion revealed by WAXS and SAXS can be combined for a deeper insight into material behavior. Future development and applications of these three techniques will also be discussed.
基金support by the U.S.Department of Energy,Office of Science,Office of Basic Energy Sciences program under Award Number DE-SC0019121E.Gabriel also thanks the U.S.Department of Energy,the Office of Workforce Development for Teachers and Scientists,Office of Science Graduate Student Research(SCGSR)(DE-SC0014664).
文摘Sodium-ion batteries(SIBs)have stepped into the spotlight as a promising alternative to lithium-ion batteries for large-scale energy storage systems.However,SIB electrode materials,in general,have inferior performance than their lithium counterparts because Nat is larger and heavier than Lit.Heterostructure engineering is a promising strategy to overcome this intrinsic limitation and achieve practical SIBs.We provide a brief review of recent progress in heterostructure engineering of electrode materials and research on how the phase interface influences Nat storage and transport properties.Efficient strategies for the design and fabrication of heterostructures(in situ methods)are discussed,with a focus on the heterostructure formation mechanism.The heterostructure's influence on Nat storage and transport properties arises primarily from local distortions of the structure and chemomechanical coupling at the phase interface,which may accelerate ion/electron diffusion,create additional active sites,and bolster structural stability.Finally,we offer our perspectives on the existing challenges,knowledge gaps,and opportunities for the advancement of heterostructure engineering as a means to develop practical,highperformance sodium-ion batteries.
基金C.S.S.thanks the support from the National Natural Science Foundation of China(No.21874031)“Chu-Tian Scholar”Program of Hubei Province.M.H.Z.acknowledges the support from the NSFC of China(No.22171075)+4 种基金Guangxi Province(No.2017GXNSFDA198040)the BAGUI talent program(No.2019AC26001)J.J.L.and X.F.G.acknowledge the support by the institutional funds and New Faculty Seed Grant from ORAP at WSUThis research used resources of the Advanced Photon Source,an Office of Science User Facility operated for the U.S.Department of Energy(DOE)Office of Science by Argonne National Laboratory under Contract(No.DE-AC02-06CH11357)Y.M.Z.thanks the support from the China Postdoctoral Science Foundation(No.2021M701133).
文摘The development of novel single-atom catalysts is important for highly efficient electrochemical catalysis and sensing.In this work,a novel Pt single atoms(SAs)supported on Ni_(6)Co_(1)layered double hydroxides/nitrogen-doped graphene(Pt_(1)/Ni_(6)Co_(1)LDHs/NG)was constructed for electrochemical enzyme-free catalysis and sensing towards glucose.The loading of Pt single atoms increases with doping of Co atoms that generate more anchoring sites for Pt SAs.The resulting Pt_(1)/Ni_(6)Co_(1)LDHs/NG exhibits low oxidative potential of 0.440 V with high sensitivity of 273.78μA·mM^(−1)·cm^(−2)toward glucose,which are 85 mV lower and 15 times higher than those of Ni(OH)_(2),respectively.Pt_(1)/Ni_(6)Co_(1)LDHs/NG also shows excellent selectivity and great stability during 5-week testing.Theoretical and experimental results show that the boosted performance of Pt_(1)/Ni_(6)Co_(1)LDHs/NG originates from its stronger binding energy with glucose and the synergistic effect of Pt SAs,Co doping,and NG.This work provides a general strategy of designing highly active SACs for extending their application in electrochemical sensing.
基金N.C.would like to acknowledge the support the 2115 Talent Development Program of China Agricultural UniversityThis research used resources of the Advanced Photon Source,a U.S.Department of Energy(DOE)Office of Science User Facility,operated for the DOE Office of Science by Argonne National Laboratory under Contract No.DE-AC02-06CH11357.
文摘Single-atom catalyst(SAC)is one of the newest catalysts,and attracts people’s wide attention in cancer therapy based on their characteristics of maximum specific catalytic activity and high stability.We designed and synthesized a Fe-N decorated graphene nanosheet(Fe-N5/GN SAC)with the coordination number of five.Through enzymology and theoretical calculations,the Fe-N5/GN SAC has outstanding intrinsic peroxidase-like catalytic activity due to single-atom Fe site with five-N-coordination structure.We explored its potential on lung cancer therapy,and found that it could kill human lung adenocarcinoma cells(A549)by decomposing hydrogen peroxide(H_(2)O_(2))into toxic reactive oxygen species(ROS)under acidic microenvironment in threedimensional(3D)lung cancer cell model.Our study demonstrates a promising application of SAC with highly efficient single-atom catalytic sites for cancer treatment.
基金This study was undertaken as part of the Massachusetts Department of Transportation Research Program with funding from the Federal Highway Administration State Planning and Research funds,under the Project(ISA:INTF0OXO_(2)O_(2)0A0110756)W.C.is grateful for support from the US National Science Foundation(No.DMR-2004429)This research used resources of the Advanced Pho-ton Source,a U.S.Department of Energy(DOE)Office of Science user facility operated for the DOE Office of Science by Argonne Na-tional Laboratory(Contract No.DE-AC02-06CH11357).
文摘As our transportation infrastructure ages,its deterioration is becoming a growing concern.Rapid and effective methods for repair can reduce the need for time-and cost-intensive replacement of structures such as roadway bridges.In this work,laser-based additive manufacturing(AM)was developed for the repair of damaged beams in steel bridges.A corroded structural beam of low-carbon A36 steel was selected for this case study and 316L stainless steel was used for repair due to its excellent mechanical properties and corrosion resistance.Simulated repair experiments were performed on specimens extracted from the beam,and prepared with various groove shapes(Rectangular,Trapezoidal,and U-shaped).More in-depth parametric and microstructural studies were carried out with a series of U-shaped specimens repaired with the linear laser input energy varied from 19.5 to 30.0 J mm–1.The tensile properties of the repaired specimens and interface structures were also investigated in detail.It was found that the repaired specimens had a slightly higher tensile strength despite a reduction in tensile elongation compared to the A36 steel base metal.The influence of interfacial microstructure and heterogeneity on the mechanical properties of the repaired specimens was discussed.Our work suggests the promising potential to employ AM for structural repair and provides fundamental insights into processing-structure-property relationships in laser AM-repaired materials.
基金supported by Laboratory Directed Research and Development funding(LDRD 2021-0138)from Argonne National Laboratory,provided by the Director,Office of Science,of the US Department of Energy under Contract No.DE-AC02-06CH11357。
文摘The dynamics and structure of mixed phases in a complex fluid can significantly impact its material properties,such as viscoelasticity.Small-angle X-ray Photon Correlation Spectroscopy(SA-XPCS)can probe the spontaneous spatial fluctuations of the mixed phases under various in situ environments over wide spatiotemporal ranges(10−6–103 s/10−10–10−6 m).Tailored material design,however,requires searching through a massive number of sample compositions and experimental parameters,which is beyond the bandwidth of the current coherent X-ray beamline.Using 3.7-μs-resolved XPCS synchronized with the clock frequency at the Advanced Photon Source,we demonstrated the consistency between the Brownian dynamics of~100 nm diameter colloidal silica nanoparticles measured from an enclosed pendant drop and a sealed capillary.The electronic pipette can also be mounted on a robotic arm to access different stock solutions and create complex fluids with highly-repeatable and precisely controlled composition profiles.This closed-loop,AI-executable protocol is applicable to light scattering techniques regardless of the light wavelength and optical coherence,and is a first step towards high-throughput,autonomous material discovery.
基金support from the National Institute of Environmental Health Sciences of the US National Institutes of Health(Award Number 1R43ES031885-01)。
文摘Point-of-care(POC)detection of herbicides is of great importance due to their impact on the environment and potential risks to human health.Here,we design a single-atomic site catalyst(SASC)with excellent peroxidase-like(POD-like)catalytic activity,which enhances the detection performance of corresponding lateral flow immunoassay(LFIA).The iron single-atomic site catalyst(Fe-SASC)is synthesized from hemin-doped ZIF-8,creating active sites that mimic the Fe active center coordination environment of natural enzyme and their functions.Due to its atomically dispersed iron active sites that result in maximum utilization of active metal atoms,the Fe-SASC exhibits superior POD-like activity,which has great potential to replace its natural counterparts.Also,the catalytic mechanism of Fe-SASC is systematically investigated.Utilizing its outstanding catalytic activity,the Fe-SASC is used as label to construct LFIA(Fe-SASC-LFIA)for herbicide detection.The 2,4-dichlorophenoxyacetic acid(2,4-D)is selected as a target here,since it is a commonly used herbicide as well as a biomarker for herbicide exposure evaluation.A linear detection range of 1-250 ng/mL with a low limit of detection(LOD)of 0.82 ng/mL has been achieved.Meanwhile,excellent specificity and selectivity towards 2,4-D have been obtained.The outstanding detection performance of the Fe-SASC-LFIA has also been demonstrated in the detection of human urine samples,indicating the practicability of this POC detection platform for analyzing the 2,4-D exposure level of a person.We believe this proposed Fe-SASC-LFIA has potential as a portable,rapid,and high-sensitive POC detection strategy for pesticide exposure evaluation.