期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
Effect of Front Baffle Inclination Angle and Pressure Drop on Absorption Performance of a Pickup Mouth 被引量:2
1
作者 郗元 成凯 +1 位作者 李光先 程磊 《Journal of Donghua University(English Edition)》 EI CAS 2016年第1期8-12,共5页
In order to improve the dust absorption performance of the reverse blowing pickup mouth, the gas-solid flow motion properties inside the reverse blowing pickup mouth were simulated by using computational fluid dynamic... In order to improve the dust absorption performance of the reverse blowing pickup mouth, the gas-solid flow motion properties inside the reverse blowing pickup mouth were simulated by using computational fluid dynamics( CFD) software,Fluent.The results show that both the front baffle inclination angle and the pressure drop across the pickup mouth have significant impacts on dust absorption performance. As the inclination angle is increased,there is an increase in the overall and grade removal efficiency. As the front baffle inclination angle or pressure drop is increased,there is an increase in the overall and grade removal efficiencies.However,pressure drop affects energy consumption. Front baffle inclination angle and pressure drop are optimized. Optimal inclination angle and pressure drop are 105° and 2 300 Pa respectively. Sample machine is made and measured,which further verifies the appropriateness of numerical simulation and practicability of optimum strategy. 展开更多
关键词 reverse blowing pickup mouth optimization design dust absorption performance computational fluid dynamics(CFD) sample machine
下载PDF
Numerical Simulation of Gas-Solid Two-Phase Flow in Reverse Blowing Pickup Mouth 被引量:1
2
作者 郗元 成凯 +2 位作者 娄希同 程磊 董超 《Journal of Donghua University(English Edition)》 EI CAS 2015年第4期530-535,共6页
Pickup mouth is a key component for the service performance of a street sweeper. Computational fluid dynamics( CFD) technology,as an analysis tool in fluid flow simulation,is employed in this work because it can great... Pickup mouth is a key component for the service performance of a street sweeper. Computational fluid dynamics( CFD) technology,as an analysis tool in fluid flow simulation,is employed in this work because it can greatly shorten the design period. To obtain higher simulation accuracy,the gas-solid coupling inside the process cannot be neglected during numerical simulation.Our optimization procedure considers the influence of structure and operational parameters. It is recommended that the outlet diameter is less than 0. 42 of the width and the outlet inclination angle is 110°for structure parameters. The dust collection efficiency is improved when the reverse flow rate is 70% of the total volume,the sweepertraveling speed is 10 km / h,and the pressure drop is 2 400 Pa.Simulation results exhibit well consistency with the physical experimental results. 展开更多
关键词 SWEEPER pickup mouth parameter optimization computational fluid dynamics(CFD) gas-solid flow
下载PDF
Stiffness Analysis of Spherical Parallel Mechanism U_(P+R) with 2-DOF
3
作者 Yu-Lin Zhou Long Yang +2 位作者 Bo Li Da-Xing Zeng Feng Gao 《Journal of Harbin Institute of Technology(New Series)》 EI CAS 2013年第4期41-47,共7页
As one of the typical less-mobility parallel mechanisms,the spherical parallel mechanism U_(P + R) with two degrees of freedom(2-DOF)possess high order overconstraints,and the calculation of its stiffness is partly di... As one of the typical less-mobility parallel mechanisms,the spherical parallel mechanism U_(P + R) with two degrees of freedom(2-DOF)possess high order overconstraints,and the calculation of its stiffness is partly different with general parallel mechanisms owing to the bars in each branch are assumed to be arc-shaped.By means of small deformation superposition principle,the relationship between the angle displacement and line displacement of moving platform and the forces acted on the branches were derived out.Based on the results of static analysis,the relationship between the applied force,the line displacement and the angle displacement of the mechanism was set up.And then the stiffness matrix was obtained.The six principal stiffness of the mechanism and the corresponding directions were achieved by the orthogonal transformation.The numerical calculation was performed and the results showed that the principal stiffness and directions are varied with the pose-position of the mechanism,and the principal stiffness is gradually enlarged when it is far away from the origin.In addition,the torsion stiffness is much greater and the line deformation stiffness is smaller,the difference between the two parts is huge.The research content of this paper supplies the theoretical foundation for the further engineering design and application of the spherical parallel mechanism. 展开更多
关键词 spherical parallel mechanism static stiffness orthogonal transformation line displacement angle displacement
下载PDF
Test verification of a seat-cabin system vertical dynamic model for high-grade fork lift trucks
4
作者 Leilei Zhao Yuewei Yu +1 位作者 Changcheng Zhou Shaofang Mao 《International Journal of Modeling, Simulation, and Scientific Computing》 EI 2018年第1期125-134,共10页
The seat-cabin system of fork lift trucks has a great influence on ride comfort.On the basis of the structure and characteristics of the seat-cabin system for a high-grade fork lift truck,a seat-cabin system vertical ... The seat-cabin system of fork lift trucks has a great influence on ride comfort.On the basis of the structure and characteristics of the seat-cabin system for a high-grade fork lift truck,a seat-cabin system vertical dynamic model was created.The vertical dynamic responses of the model under the random irregularities excitation were calculated.The calculated responses including the seat dynamic response and the cabin dynamic responses at the four corners are very close to the field measurement data and the relative deviations of the(root mean square)RMS acceleration responses are all less than 6.0%.The results show that the vertical dynamic model is acceptable and can truly describe the basic mechanical behavior of the seat-cabin system.The model provides a good basis for investigating the relations between the dynamic parameters and the vibration attenuation characteristics of the seat-cabin system to further improve ride comfort. 展开更多
关键词 Vehicle engineering seat-cabin system vertical dynamic model test validation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部