期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Spatial organization of multiple plant species in arid ecosystems:linking patterns and processes 被引量:1
1
作者 Amit CHAKRABORTY B.Larry LI 《Journal of Arid Land》 SCIE 2010年第1期9-13,共5页
Spatial organization of multiple plant species that appears as a non-random distribution of vegetative patches is one of the mostly observed spatial patterns in arid ecosystems. Yet understanding of ecological process... Spatial organization of multiple plant species that appears as a non-random distribution of vegetative patches is one of the mostly observed spatial patterns in arid ecosystems. Yet understanding of ecological processes allowing this spatial pattern to emerge through interspecific interactions is still lacking. With a proposed conceptual model involving interspecific trade-offs between species competitive ability and colonization ability, we have argued that within patch abundance dynamics regulated by the mechanisms of competition are strongly influenced by the between patches colonization dynamics that are maintained via this trade-offs and it holds a positive, intraspecific occupancy-abundance relationship, in which increased patch occupancy increases species density within inhabiting patches. In a constant environment, while local abundance dynamics approach toward a stable equilibrium point, a fixed spatial arrangement of species can be retained through this coupled dynamics. However, in fluctuating environments where existence of such stable equilibriums is highly uncertain, it may involve continuous transitions from one community state to another as species re-organized themselves over space through the rapid changes in local species abundances. While some of the inhabiting patches are destroyed exogenously or endogenously, or species responses to increasing environmental fluctuations vary increasingly with time, discontinuous transitions into an abrupt, irreversible state of the community dynamics may occur, as with this effect the inherent positive relationship between occupancy and abundance of species is no longer maintained. 展开更多
关键词 spatial organization competition-colonization tradeoffs spatial coexistence occupancy-abundance relationship
下载PDF
Contribution of biodiversity to ecosystem functioning:a non-equilibrium thermodynamic perspective 被引量:1
2
作者 Amit CHAKRABORTY B Larry LI 《Journal of Arid Land》 SCIE 2011年第1期71-74,共4页
Ecosystem stays far from thermodynamic equilibrium. Through the interactions among biotic and abiotic components, and encompassing physical environments, ecosystem forms a dissipative struc- ture that allows it to dis... Ecosystem stays far from thermodynamic equilibrium. Through the interactions among biotic and abiotic components, and encompassing physical environments, ecosystem forms a dissipative struc- ture that allows it to dissipate energy continuously and thereby remains functional over time. Biotic regulation of energy and material fluxes in and out of the ecosystem allows it to maintain a homeostatic state which corresponds to a self-organized state emerged in a non-equilibrium thermodynamic system. While the associated self-organizational processes approach to homeostatic state, entropy (a measure of irre- versibility) degrades and dissipation of energy increases. We propose here that at a homeostatic state of ecosystem, biodiversity which includes both phenotypic and functional diversity, attains optimal values. As long as biodiversity remains within its optimal range, the corresponding homeostatic state is maintained. However, while embedded environmental conditions fluctuate along the gradient of accelerating changes, phenotypic diversity and functional diversity contribute inversely to the associated self-organizing proc- esses. Furthermore, an increase or decrease in biodiversity outside of its optimal range makes the eco- system vulnerable to transition into a different state. 展开更多
关键词 ECOSYSTEM SELF-ORGANIZATION non-equilibrium thermodynamics functional diversity phenotypic diversity
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部