According to specific performance requirements,an integrated switched reluctance starter/generator system,which can start the engine and supply electrical energy to the loads,is designed and manufactured for the unman...According to specific performance requirements,an integrated switched reluctance starter/generator system,which can start the engine and supply electrical energy to the loads,is designed and manufactured for the unmanned aerial vehicle.Considering the required starting torque and speed range,the geometrical dimensions of the switched reluctance machine are calculated based on the output equation and further optimized with finite element analysis,and the flux-linkage,inductance and static torque characteristics are illustrated.To verify the performances of the designed system,detailed simulation with the model considering piston engine and experiment using the test bench are carried out.展开更多
SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosph...SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosphere. The porosity of SiC-Si3N4 ceramics decreases to 6.4% due to the addition of inert filler Si3N4. And the content and crystallization degree of free carbon and SiC derived from PCS are improved simultaneously with the increase of thermal treatment temperature. Finally, the free carbon and SiC interconnect, forming the conductive network. As a result, the electromagnetic interference(EMI) shielding performance of the as-prepared ceramic annealed at 1400℃ reaches up to 36 d B, meaning more than99.9% of EM energy is shielded. The low porosity and high EMI shielding performance enable SiC-Si3N4 composite ceramics to be a promising electromagnetic shielding and structural material.展开更多
This paper proposes a fast adaptive fault estimator-based active fault-tolerant control strategy for a quadrotor UAV against multiple actuator faults.A fast adaptive fault estimation algorithm is designed to estimate ...This paper proposes a fast adaptive fault estimator-based active fault-tolerant control strategy for a quadrotor UAV against multiple actuator faults.A fast adaptive fault estimation algorithm is designed to estimate the unknown actuator fault parameters.By synthesizing the fast adaptive fault estimator with the embedded control law,an active fault-tolerant control mechanism is established to compensate the adverse e®ects of multiple actuator faults.The e®ectiveness of the proposed strategy is validated through both numerical simulations and experimental tests.展开更多
基金This work was supported by the Key Research and Development Plan of Shaanxi Province under Grant 2018GY-185,Xi'an Science and Technology Plan under Grant 2017086CG/RC049(XBGY002)the ASN Innovation Development Fund under Grant ASN-IF2015-3110the Fundamental Research Funds for the Central Universities under Grants 3102017AX007.
文摘According to specific performance requirements,an integrated switched reluctance starter/generator system,which can start the engine and supply electrical energy to the loads,is designed and manufactured for the unmanned aerial vehicle.Considering the required starting torque and speed range,the geometrical dimensions of the switched reluctance machine are calculated based on the output equation and further optimized with finite element analysis,and the flux-linkage,inductance and static torque characteristics are illustrated.To verify the performances of the designed system,detailed simulation with the model considering piston engine and experiment using the test bench are carried out.
基金financially supported by the National Natural Science Foundation of China (Grant Nos. 51332004, 51521061, 51602258 and 51725205)the 111 Project (B08040)
文摘SiC-Si3N4 composite ceramics are successfully fabricated by pyrolysis of ferrocene-modified polycarbosilane(PCS) mixed with inert filler Si3N4 powders, followed by thermal treatment from 1100℃ to 1400℃ in Ar atmosphere. The porosity of SiC-Si3N4 ceramics decreases to 6.4% due to the addition of inert filler Si3N4. And the content and crystallization degree of free carbon and SiC derived from PCS are improved simultaneously with the increase of thermal treatment temperature. Finally, the free carbon and SiC interconnect, forming the conductive network. As a result, the electromagnetic interference(EMI) shielding performance of the as-prepared ceramic annealed at 1400℃ reaches up to 36 d B, meaning more than99.9% of EM energy is shielded. The low porosity and high EMI shielding performance enable SiC-Si3N4 composite ceramics to be a promising electromagnetic shielding and structural material.
基金National Key Research and Development Program of China(Grant No.2020YFA0711200)National Natural Science Foundation of China(Grant Nos.61833013 and 61973012)+2 种基金Defense Industrial Technology Development Program(Grant No.JCKY2020601C016)Key Research and Development Program of Zhejiang(Grant No.2021C03158)Science and Technology Key Innovative Project of Hangzhou(Grant No.20182014B06).
文摘This paper proposes a fast adaptive fault estimator-based active fault-tolerant control strategy for a quadrotor UAV against multiple actuator faults.A fast adaptive fault estimation algorithm is designed to estimate the unknown actuator fault parameters.By synthesizing the fast adaptive fault estimator with the embedded control law,an active fault-tolerant control mechanism is established to compensate the adverse e®ects of multiple actuator faults.The e®ectiveness of the proposed strategy is validated through both numerical simulations and experimental tests.