The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has...The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.展开更多
The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2...The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2[Nd(S_2CNEt_2)_4] by chemical and elemental analyses and the bonding characteristics of which was characterized by IR. The enthalpies of solution of neodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change of liquid-phase reaction of formation for Et_2NH_2[Nd (S_2CNEt_2)_4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid-phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.展开更多
The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition de...The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.展开更多
Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,whic...Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.展开更多
Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction o...Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction of MGTV in air,it was investigated via thermo gravity-differential scanning calorimetry(TG-DSC).Meanwhile,the morphologies and element distributions on the alloy surface during the reaction of MGTV in air were investigated via scanning electronic microscope-mapping-electronic differential spectrometer.Meanwhile,a similar experimental protocol on the Mg-Gd alloy particle during oxidation was also applied.The results showed that owning to a protective oxide shell,the onset oxidation temperature of Mg-Gd alloy is higher than Mg.However,the onset oxidation temperature of the exceeded Mg-Gd alloy in MGTV is significantly lower than that of the exceeded Mg in MTV.It was due to the existence of GdOF,which could significantly lower the oxidation temperature of the exceeded fuel.Furthermore,a possible reaction mechanism was proposed.The fascinating oxidation properties of Mg-Gd alloy suggested its promising applications in energetic materials.展开更多
Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.H...Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs.展开更多
The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves...The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.展开更多
An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of th...An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation.展开更多
2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reacti...2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.展开更多
Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculate...Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.展开更多
Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalyst...Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.展开更多
Ammonium dinitramide(ADN)is a new type of green energetic oxidizer with excellent energy density and low pollution combustion characteristics.However,the strong hygroscopicity has a significant impact on its practical...Ammonium dinitramide(ADN)is a new type of green energetic oxidizer with excellent energy density and low pollution combustion characteristics.However,the strong hygroscopicity has a significant impact on its practical application.To assist in the research on moisture-proof modification of ADN materials,an innovative hygroscopic modeling approach was proposed to evaluate the hygroscopicity of ADN at various temperatures and humidities.By investigating the diffusion coefficient of water molecules in molecular dynamics processes,a visual insight into the hygroscopic process of ADN was gained.Furthermore,analyzing the non-covalent interactions between ADN and water molecules,the hygroscopicity of ADN could be evaluated qualitatively and quantitatively.The energy analysis revealed that electrostatic forces play a dominant role in the process of water adsorption by ADN,whereas van der Waals forces impede it.As a whole,the simulation results show that ADN presents the following hygroscopic law:At temperatures ranging from 273 K to 373 K and relative humidity(RH)from 10%to 100%,the hygroscopicity of ADN generally shows an increasing trend with the rise in temperature and humidity based on the results of three simulations.According to the non-hygroscopic point(298 K,52%RH)of ADN obtained by experiment in the literature,a non-hygroscopic range of temperature and humidity for ADN can be depicted when the simulation results in relative hygroscopicity is less than or equal to 17%.This study can provide effective strategies for screening anti-hygroscopic modified materials of ADN.展开更多
As an energetic material of great interest,the work capacity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)has been questioned recently.Although some research groups have explored the reasons for the l...As an energetic material of great interest,the work capacity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)has been questioned recently.Although some research groups have explored the reasons for the low working ability of TKX-50,the plane impact experiment on powdered TKX-50 is obviously closer to the practical application,and the conclusions based on this are more guiding.Hence,we performed shock Hugoniot measurements of powdered TKX-50 between 5.65 and 16.29 GPa.The plane impact experiments of powdered TKX-50 were carried out and the shocked Raman spectra were collected.By Raman spectroscopy analysis,a new peak of powdered TKX-50 was found between19.47 GPa and 24.96 GPa,which may be caused by decomposition/phase transition and was related with the low work capacity.展开更多
Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and ...Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials.展开更多
Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce p...Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce plasma during electric explosion can serve as a good carrier for studying the EEC.To investigate the enhancement ability and mechanism of EEC in EFI ignition performance,a kind of EFI chips which could realize the EEC effect was designed and fabricated to observe the characteristics of current and voltage,flyer and plasma temperature during Boron Potassium Nitrate(BPN) ignition of the EFI.It was found that the EEC could enhance EFI ignition in terms of energy utilization,ignition contact surface,and high-temperature sustainability of plasma:firstly,the EEC prolonged the late time discharge(LTD) phase of the electric explosion,making the energy of capacitor effectively utilized;secondly,the EEC could create a larger area of ignition contact surface;last of all,the EEC effect enhanced its hightemperature sustainability by sustaining continuous energy input to plasma.It also was found that the ignition voltage of BPN could be reduced by nearly 600 V under the condition of 0.4 μF capacitance.The research has successfully combined EEC with EFI,revealing the behavioral characteristics of EEC and demonstrating its effective enhancement of EFI ignition.It introduces a new approach to improving EFI output,which is conducive to low-energy ignition of EFI,and expected to take the ignition technology of EFI to a new level.展开更多
In this work,we utilize a cocrystallization technique to solve the problem of high hygroscopicity of the high-energy oxidant ammonium dinitramide(ADN).For this purpose,a non-hygroscopic oxidant,triaminoguanidine nitra...In this work,we utilize a cocrystallization technique to solve the problem of high hygroscopicity of the high-energy oxidant ammonium dinitramide(ADN).For this purpose,a non-hygroscopic oxidant,triaminoguanidine nitrate(TAGN),is selected as the cocrystallization ligand.The ADN/TAGN system is simulated by using Material Studio 5.5 software,and the DFT of ADN and TAGN molecules are calculated by Gaussian09 software.The most stable molar ratio of the ADN/TAGN cocrystallization is determined to be 1:1,and the hydrogen bonding between the H atom of ADN and the O atom in the TAGN is the driving force for the formation of cocrystals in this system.Moreover,the electrostatic potential interaction pairing energy difference(ΔEpair)<0 kJ·mol^(-1)(-12.71 kJ·mol^(-1))for nADN:nTAGN=1:1 again indicates cocrystallization at this molar ratio.The crystal structure and crystal morphology is predicted.And the hygroscopicity of ADN/TAGN cocrystal at 20℃and 40%relative humidity is calculated to be only 0.45%.The mechanism of hygroscopicity is investigated by examining the roughness of each crystal surface.Overall,the more hygroscopic it is in terms of surface roughness,with the roughest crystal surface(012)having a hygroscopicity of 1.78,which corresponds to a saturated hygroscopicity of 0.61%.The results show that the(001)crystal surface has the smallest band gap(1.06 eV)and the largest sensitivity.Finally,the oxygen equilibrium value for the ADN/TAGN system is calculated to be-8.2%.展开更多
In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in thi...In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.展开更多
Foamed combustible material based on polymer bonded RDX was fabricated using CO_2 as foaming agent.The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented dif...Foamed combustible material based on polymer bonded RDX was fabricated using CO_2 as foaming agent.The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented different formulations and inner porous structures. The combustion behaviors of felted and foamed materials were investigated by closed vessel test. Simultaneously, the co-combustion behavior of combustible cartridge case with 7-perf consolidated propellants was also investigated. The results of closed vessel test is applicable to gun system which is made of the foamed combustible material as component.展开更多
The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism ...The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are in good agreement with the experimental results.The composition of TKX-50 and AP can also prolong the decomposition process.展开更多
The interaction and compatibility between diaminoazofuraz(DAAzF)and some energetic materials are studied by using pressure differential scanning calorimetry(DSC)method.The energetic materials include cyclotetramethyle...The interaction and compatibility between diaminoazofuraz(DAAzF)and some energetic materials are studied by using pressure differential scanning calorimetry(DSC)method.The energetic materials include cyclotetramethylenetetranitramine(HMX),cyclotrimethylenetrinitramine(RDX),nitrocellulose(NC),nitroglycerine(NG),125/100-NC/NG mixture(NC+NG),N-nitrodihydroxyethylaminedinitrate(DINA),aluminum powder(Al),and 3,4-dinitrofurzanfuroxan(DNTF).The results show that there are obvious interactions between DAAzF and DNTF,DINA,HMX or RDX,while weak interactions between DAAzF and NC,NG,NC+NG or Al.According to the evaluated standard of compatibility,the binary systems of DAAzF with NC,NG,NC+NG and Al are compatible,the binary system of it with RDX is slightly sensitive,the binary systems of it with HMX and DINA are sensitive,and the binary system of it with DNTF is hazardous.展开更多
文摘The present work aims to stabilize the room temperature allotropic transition of ammonium nitrate(AN)particles utilizing a microencapsulation technique,which involves solvent/non-solvent in which nitrocellulose(NC)has been employed as a coating agent.The SEM micrographs revealed distinct features of both pure AN and NC,contrasting with the irregular granular surface topography of the coated AN particles,demonstrating the adherence of NC on the AN surface.Structural analysis via infrared spectroscopy(IR)demonstrated a successful association of AN and NC,with slight shifts observed in IR bands indicating interfacial interactions.Powder X-ray Diffraction(PXRD)analysis further elucidated the structural changes induced by the coating process,revealing that the NC coating altered the crystallization pattern of its pure form.Thermal analysis demonstrates distinct profiles for pure and coated AN,for which the coated sample exhibits a temperature increase and an enthalpy decrease of the room temperature allotropic transition by 6℃,and 36%,respectively.Furthermore,the presence of NC coating alters the intermolecular forces within the composite system,leading to a reduction in melting enthalpy of coated AN by~39%compared to pure AN.The thermal decomposition analysis shows a two-step thermolysis process for coated AN,with a significant increase in the released heat by about 78%accompanied by an increase in the activation barrier of NC and AN thermolysis,demonstrating a stabilized reactivity of the AN-NC particles.These findings highlight the synergistic effect of NC coating on AN particles,which contributed to a structural and reactive stabilization of both AN and NC,proving the potential application of NC-coated AN as a strategically advantageous oxidizer in composite solid propellant formulations.
文摘The complex of neodymium chloride lower hydrate with diethylammonium diethyldithiocarbamate (D-DDC) was synthesized conveniently in absolute alcohol and dry N_2 atmosphere. The title complex was identified as Et_2NH_2[Nd(S_2CNEt_2)_4] by chemical and elemental analyses and the bonding characteristics of which was characterized by IR. The enthalpies of solution of neodymium chloride hydrate and D-DDC in absolute alcohol at 298.15 K and the enthalpies change of liquid-phase reaction of formation for Et_2NH_2[Nd (S_2CNEt_2)_4] at different temperatures were determined by microcalorimetry. On the basis of experimental and calculated results, three thermodynamic parameters (the activation enthalpy, the activation entropy and the activation free energy), the rate constant and three kinetic parameters (the apparent activation energy, the pre-exponential constant and the reaction order) of liquid-phase reaction of formation were obtained. The enthalpy change of the solid-phase title reaction at 298.15 K was calculated by a thermochemical cycle.
文摘The physical process of capillary discharge in a PE tube utilized in electro-thermal-chemical(ETC)guns was investigated.ETC guns can enhance the ignition and combustion of propellant in order to reduce the ignition delay and increase muzzle velocity of the projectile.A key component in ETC gun is the capillary plasma source.In this paper,a 2D steady state model of discharge was built by using magnetic hydrodynamics method.It took the plasma energy balance,material ablation,mass and momentum conservations in a quasi-neutral plasma region into account.Also,the effect of different compositions and PE concentration distribution were considered.In order to evaluate the validation of this model,the simulation results are compared with former works.
基金funded by Shaanxi Provincial Key Research and Development Program of China(Grant No.2021ZDLGY11)partially supported by NSAF Project of China(Grant No.U2030202)。
文摘Boron has high mass and volume calorific values,but it is difficult to ignite and has low combustion efficiency.This literature review summarizes the strategies that are used to solve the above-mentioned problems,which include coatings of boron by using fluoride compounds,energetic composites,metal fuels,and metal oxides.Coating techniques include recrystallization,dual-solvent,phase transfer,electrospinning,etc.As one of the effective coating agents,the fluorine compounds can react with the oxide shell of boron powder.In comparison,the energetic composites can effectively improve the flame temperature of boron powder and enhance the evaporation efficiency of oxide film as a condensed product.Metals and metal oxides would react with boron powder to form metal borides with a lower ignition point,which could reduce its ignition temperature.
文摘Mg-Gd alloy particle has exhibited its unique combustion properties as the fuel of Mg/Teflon/Viton(MTV).Mg-Gd alloy/Teflon/Viton(MGTV)could burn at lower ambient pressure than MTV.To further investigate the reaction of MGTV in air,it was investigated via thermo gravity-differential scanning calorimetry(TG-DSC).Meanwhile,the morphologies and element distributions on the alloy surface during the reaction of MGTV in air were investigated via scanning electronic microscope-mapping-electronic differential spectrometer.Meanwhile,a similar experimental protocol on the Mg-Gd alloy particle during oxidation was also applied.The results showed that owning to a protective oxide shell,the onset oxidation temperature of Mg-Gd alloy is higher than Mg.However,the onset oxidation temperature of the exceeded Mg-Gd alloy in MGTV is significantly lower than that of the exceeded Mg in MTV.It was due to the existence of GdOF,which could significantly lower the oxidation temperature of the exceeded fuel.Furthermore,a possible reaction mechanism was proposed.The fascinating oxidation properties of Mg-Gd alloy suggested its promising applications in energetic materials.
基金the National Natural Science Foundation of China(Project Nos.21805139,21905023,12102194,22005144 and 22005145)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)+2 种基金Natural Science Foundation of Jiangsu Province(Grant No.BK20200471)the Fundamental Research Funds for the Central Universities(Grant Nos.30920041106,30921011203)Young Elite Scientists Sponsorship Program by CAST(Program,2021QNRC001).
文摘Improving the application of nanomaterials has always been a research hotspot in the field of energetic materials(EMs)due to their obvious catalytic effect on the EMs,especially the uniformly dispersed nanomaterials.However,few studies have reported the dispersion of nanomaterials.In this study,the dispersity and mixing uniformity of nano-CuCr_(2)O_(4)was evaluated based on the difference of solid UV light absorption between the nano-catalytic materials and EMs.The nano-CuCr_(2)O_(4)/ultrafine AP composites with different dispersity of nano-CuCr_(2)O_(4)were prepared by manual grinding and mechanical grinding with different grinding strength and griding time.And then,the absorbance of different samples at 212 nm was obtained by solid UV testing due to the high repeatability of the absorbance at 210-214 nm for three parallel experiments,and the dispersity of different samples was calculated through the established difference equation.Furthermore,the samples were characterized by XRD,IR,SEM,EDS,DSC and TG-MS,which confirmed that different mixing methods did not change the structure of the samples(XRD and IR),and the mixing uniformity improved with the increase of grinding strength and grinding time(SEM and EDS).The scientificity and feasibility of the difference equation were further verified by DSC.The dispersity of nano-CuCr_(2)O_(4)exhibits a positive intrinsic relationship with its catalytic performance,and the uniformly dispersed nano-CuCr_(2)O_(4)significantly reduces the thermal decomposition temperature of ultrafine AP from 367.7 to 338.8℃.The TG-MS patterns show that the dispersed nano-CuCr_(2)O_(4)advanced the thermal decomposition process of ultrafine AP by about 700 s,especially in the high temperature decomposition stage,and the more concentrated energy release characteristic is beneficial to further enhance the energy performance of AP-based propellants.The above conclusions show that the evaluation method of dispersity based on solid UV curves could provide new ideas for the dispersity characterization of nano-catalytic materials in EMs,which is expected to be widely used in the field of EMs.
基金the support for this work by National Natural Science Foundation of China(Grant Nos.22175139 and 22105156)。
文摘The weak interface interaction and solid-solid phase transition have long been a conundrum for 1,3,5,7-tetranitro-1,3,5,7-tetraazacyclooctane(HMX)-based polymer-bonded explosives(PBX).A two-step strategy that involves the pretreatment of HMX to endow—OH groups on the surface via polyalcohol bonding agent modification and in situ coating with nitrate ester-containing polymer,was proposed to address the problem.Two types of energetic polyether—glycidyl azide polymer(GAP)and nitrate modified GAP(GNP)were grafted onto HMX crystal based on isocyanate addition reaction bridged through neutral polymeric bonding agent(NPBA)layer.The morphology and structure of the HMX-based composites were characterized in detail and the core-shell structure was validated.The grafted polymers obviously enhanced the adhesion force between HMX crystals and fluoropolymer(F2314)binder.Due to the interfacial reinforcement among the components,the two HMX-based composites exhibited a remarkable increment of phase transition peak temperature by 10.2°C and 19.6°C with no more than 1.5%shell content,respectively.Furthermore,the impact and friction sensitivity of the composites decreased significantly as a result of the barrier produced by the grafted polymers.These findings will enhance the future prospects for the interface design of energetic composites aiming to solve the weak interface and safety concerns.
基金funded by the National Natural Science Foundation of China (Grant Nos.12302444 and 12202349)。
文摘An in-depth understanding of the fracture behavior and mechanism of metallic shells under internal explosive loading can help develop material designs for warheads and regulate the quantity and mass distribution of the fragments formed.This study investigated the fragmentation performance of a new high-carbon silicon-manganese(HCSiMn)steel cylindrical shell through fragment recovery experiments.Compared with the conventional 45Cr steel shell,the number of small mass fragments produced by the HCSi Mn steel shell was significantly increased with a scale parameter of 0.57 g fitted by the Weibull distribution model.The fragmentation process of the HCSi Mn shell exhibited more brittle tensile fracture characteristics,with the microcrack damage zone on the outer surface being the direct cause of its high fragmentation.On the one hand,the doping of alloy elements resulted in grain refinement by forming metallographic structure of tempered sorbite,so that microscopic intergranular fracture reduces the characteristic mass of the fragments;on the other hand,the distribution of alloy carbides can exert a"pinning"effect on the substrate grains,causing more initial cracks to form and propagate along the brittle carbides,further improving the shell fragmentation.Although the killing power radius for light armored vehicles was slightly reduced by about 6%,the dense killing radius of HCSiMn steel projectile against personnel can be significantly increased by about 26%based on theoretical assessment.These results provided an experimental basis for high fragmentation warhead design,and to some extent,revealed the correlation mechanism between metallographic structure and shell fragmentation.
基金Scientific Research Foundation for High-level Talents of Anhui University of Science and Technology(Grant No.2021yjrc38)Anhui Provincial Natural Science Foundation(Grant No.2208085QA27)+1 种基金National Natural Science Foundation of China(Grant Nos.11972046,12002266)the authors would like to thank these foundations for financial support.
文摘2,4-dinitroanisole(DNAN)is a good replacement for 2,4,6-trinitrotoluene(TNT)in melt-cast explosives due to its superior insensitivity.With the increasing use of DNAN-based melt-cast explosives,the prediction of reaction violence and hazard assessment of the explosives subjected to shock is of great significance.This study investigated the shock initiation characteristics for a DNAN-based melt-cast explosive,DHFA,using the one-dimensional Lagrangian apparatus.The embedded manganin gauges in the apparatus record the pressure histories at four Lagrangian positions and show that shock-todetonation transition in DHFA needs a high input shock pressure.The experimental data are analyzed to calibrate the Ignition and Growth model.The calibration is performed using an objective function based on both pressure history and the arrival time of shock.Good agreement between experimental and calculated pressure histories indicates the high accuracy of the calibrated parameters with the optimization method.
基金supported by Key Science and Technology Innovation Team of Shaanxi Province(No.2022TD-33)National Natural Science Foundation of China(Grant Nos.21373161,21504067)。
文摘Traditional selection of combustion catalysis is time-consuming and labor-intensive.Theoretical calculation is expected to resolve this problem.The adsorption energy of HMX and O atoms on 13 metal oxides was calculated using DMol3,since HMX and O are key substances in decomposition process.And the relationship between the adsorption energy of HMX,O on metal oxides(TiO_(2),Al_(2)O_(3),PbO,CuO,Fe_(2)O_(3),Co_(3)O_(4),Bi_(2)O_(3),NiO)and experimental T30 values(time required for the decomposition depth of HMX to reach 30%)was depicted as volcano plot.Thus,the T30 values of other metal oxides was predicted based on their adsorption energy on volcano plot and validated by previous experimental data.Further,the adsorption energy of HMX on ZrO_(2)and MnO_(2)was predicted based on the linear relationship between surface energy and adsorption energy,and T30 values were estimated based on volcano plot.The apparent activation energy data of HMX/MgO,HMX/SnO_(2),HMX/ZrO_(2),and HMX/MnO_(2)obtained from DSC experiments are basically consistent with our predicted T30 values,indicating that it is feasible to predict the catalytic activity based on the adsorption calculation,and it is expected that these simple structural properties can predict adsorption energy to reduce the large quantities of computation and experiment cost.
基金supported by the National Natural Science Foundation of China(22008212,22078292,21902124)Natural Science Basic Research Planning Shaanxi Province of China(2017ZDJC-29)+2 种基金Key Research and Development Project of Shaanxi Province(2018ZDXM-GY-173)China Postdoctoral Science Foundation(2019 M663848)Open cooperative innovation fund of Xi'an Institute of modern chemistry(SYJJ48).
文摘Chlorotrifluoroethylene(CTFE)is a vital fluorinated olefinic monomer produced through the catalytic hydrodechlorination of trichlorotrifluoroethane(CFC-113),an eco-friendly process.However,hydrodechlorination catalysts for olefin production often suffer from poor stability.The Pd/AC catalyst and Pd-Cu/AC catalyst prepared by co-impregnation method exhibited poor stability,Pd-Cu/AC catalyst with CFC-113 conversion dropping to around 37%after 50 h of hydrodechlorination reaction.Brunauer-Emmett-Teller,transmission electron microscopy,X-ray photoelectron spectroscopy,and X-ray diffraction of fresh and deactivated Pd/AC catalysts indicate that the deactivation of Pd/AC catalysts is due to high-temperature agglomeration of Pd.Comparative analysis of fresh and deactivated Pd-Cu/AC catalysts using Brunauer-Emmett-Teller,transmission electron microscopy,and thermogravimetric analysis techniques revealed decreased dispersion of active sites,reduced surface area,catalyst aggregation deactivation,and a significant decrease in Cu content.Furthermore,the results of NH3-TPD revealed that the acid sites of the catalyst increased significantly.X-ray diffraction spectra indicated the formation of new species,basic copper chloride(Cu_(2)(OH)_(3)Cl),during the reaction.As the reaction progressed,these new species agglomerated,leading to a gradual loss of catalyst activity.Moreover,the deactivated catalyst was successfully reactivated using a simple alkaline washing method.
基金supported by the National Natural Science Foundation of China(Grant Nos.22375098,21805139 and 12102194)the Joint Funds of the National Natural Science Foundation of China(Grant No.U2141202)Young Elite Scientists Sponsorship Program by CAST(Grant No.2021QNRC001).
文摘Ammonium dinitramide(ADN)is a new type of green energetic oxidizer with excellent energy density and low pollution combustion characteristics.However,the strong hygroscopicity has a significant impact on its practical application.To assist in the research on moisture-proof modification of ADN materials,an innovative hygroscopic modeling approach was proposed to evaluate the hygroscopicity of ADN at various temperatures and humidities.By investigating the diffusion coefficient of water molecules in molecular dynamics processes,a visual insight into the hygroscopic process of ADN was gained.Furthermore,analyzing the non-covalent interactions between ADN and water molecules,the hygroscopicity of ADN could be evaluated qualitatively and quantitatively.The energy analysis revealed that electrostatic forces play a dominant role in the process of water adsorption by ADN,whereas van der Waals forces impede it.As a whole,the simulation results show that ADN presents the following hygroscopic law:At temperatures ranging from 273 K to 373 K and relative humidity(RH)from 10%to 100%,the hygroscopicity of ADN generally shows an increasing trend with the rise in temperature and humidity based on the results of three simulations.According to the non-hygroscopic point(298 K,52%RH)of ADN obtained by experiment in the literature,a non-hygroscopic range of temperature and humidity for ADN can be depicted when the simulation results in relative hygroscopicity is less than or equal to 17%.This study can provide effective strategies for screening anti-hygroscopic modified materials of ADN.
基金supported by the National Natural Science Foundation of China(Grant No.12072299)the Fundamental Research Funds for the Central Universities(Grant No.2682020ZT102)。
文摘As an energetic material of great interest,the work capacity of dihydroxylammonium 5,5’-bistetrazole-1,1’-diolate(TKX-50)has been questioned recently.Although some research groups have explored the reasons for the low working ability of TKX-50,the plane impact experiment on powdered TKX-50 is obviously closer to the practical application,and the conclusions based on this are more guiding.Hence,we performed shock Hugoniot measurements of powdered TKX-50 between 5.65 and 16.29 GPa.The plane impact experiments of powdered TKX-50 were carried out and the shocked Raman spectra were collected.By Raman spectroscopy analysis,a new peak of powdered TKX-50 was found between19.47 GPa and 24.96 GPa,which may be caused by decomposition/phase transition and was related with the low work capacity.
基金funding support from Startup Foundation for Docotors of Yan’an University(Grant No.YAU205040372)Project of Science and Technology Office of Shaanxi Province(Grant No.2023-JC-QN-0152)。
文摘Carbon material is an important additive in energetic materials.Graphene is a monolayer carbon material in which carbon atoms are arranged in two-dimensional honeycomb structure,who has special optical,electrical,and mechanical properties.Recently,the application of graphene-based composites in energetic materials has received extensive attention.This review mainly summarizes the applications of graphene and graphene-based nanomaterials in energetic materials.The effects of these materials on the thermal stability,sensitivity,mechanical property,ignition and combustion of energetic materials were discussed.Furthermore,the progress of functionalized modification of graphene has been summarized,including covalent bonding modification and doping modification.These studies show that graphenebased materials exhibit excellent performances and might emerge as promising candidate for energetic materials.
基金the Science and Technology on Applied Physical Chemistry Laboratory, China (Grant No.6142602220101) to provide fund for conducting experiments。
文摘Explosion-electricity coupling(EEC) is a technical method to induce electric energy into the plasma material produced by explosion to improve the output of explosion.Exploding foil initiator(EFI) which could produce plasma during electric explosion can serve as a good carrier for studying the EEC.To investigate the enhancement ability and mechanism of EEC in EFI ignition performance,a kind of EFI chips which could realize the EEC effect was designed and fabricated to observe the characteristics of current and voltage,flyer and plasma temperature during Boron Potassium Nitrate(BPN) ignition of the EFI.It was found that the EEC could enhance EFI ignition in terms of energy utilization,ignition contact surface,and high-temperature sustainability of plasma:firstly,the EEC prolonged the late time discharge(LTD) phase of the electric explosion,making the energy of capacitor effectively utilized;secondly,the EEC could create a larger area of ignition contact surface;last of all,the EEC effect enhanced its hightemperature sustainability by sustaining continuous energy input to plasma.It also was found that the ignition voltage of BPN could be reduced by nearly 600 V under the condition of 0.4 μF capacitance.The research has successfully combined EEC with EFI,revealing the behavioral characteristics of EEC and demonstrating its effective enhancement of EFI ignition.It introduces a new approach to improving EFI output,which is conducive to low-energy ignition of EFI,and expected to take the ignition technology of EFI to a new level.
基金supported by the National Natural Science Foundation of China(22125802).
文摘In this work,we utilize a cocrystallization technique to solve the problem of high hygroscopicity of the high-energy oxidant ammonium dinitramide(ADN).For this purpose,a non-hygroscopic oxidant,triaminoguanidine nitrate(TAGN),is selected as the cocrystallization ligand.The ADN/TAGN system is simulated by using Material Studio 5.5 software,and the DFT of ADN and TAGN molecules are calculated by Gaussian09 software.The most stable molar ratio of the ADN/TAGN cocrystallization is determined to be 1:1,and the hydrogen bonding between the H atom of ADN and the O atom in the TAGN is the driving force for the formation of cocrystals in this system.Moreover,the electrostatic potential interaction pairing energy difference(ΔEpair)<0 kJ·mol^(-1)(-12.71 kJ·mol^(-1))for nADN:nTAGN=1:1 again indicates cocrystallization at this molar ratio.The crystal structure and crystal morphology is predicted.And the hygroscopicity of ADN/TAGN cocrystal at 20℃and 40%relative humidity is calculated to be only 0.45%.The mechanism of hygroscopicity is investigated by examining the roughness of each crystal surface.Overall,the more hygroscopic it is in terms of surface roughness,with the roughest crystal surface(012)having a hygroscopicity of 1.78,which corresponds to a saturated hygroscopicity of 0.61%.The results show that the(001)crystal surface has the smallest band gap(1.06 eV)and the largest sensitivity.Finally,the oxygen equilibrium value for the ADN/TAGN system is calculated to be-8.2%.
文摘In the pursuit of advancing imidazolium-based energetic ionic liquids (EILs),the current study is devoted to the synthesis and characterization of 1,3-dibutyl-imidazolium azide ([BBIm][N_(3)]),as a novel member in this ionic liquids class.The chemical structure of this EIL was rigorously characterized and confirmed using FTIR spectroscopy,1D,and 2D-NMR analyses.The thermal behavior assessment was conducted through DSC and TGA experiments.DSC analysis revealed an endothermic glass transition at T_(g)=-61℃,followed by an exothermic degradation event at T_(onset)=311℃.Similarly,TGA thermograms exhibited a one-stage decomposition process resulting in 100% mass loss of the sample.Furthermore,the short-term thermal stability of the azide EIL was investigated by combining the non-isothermal TGA data with the TAS,it-KAS,and VYA/CE isoconversional kinetic approaches.Consequently,the Arrhenius parameters(E_(a)=154 kJ·mol^(-1),Log(A/s^(-1))=11.8) and the most probable reaction model g(a) were determined.The observed high decomposition temperatures and the significantly elevated activation energy affirm the enhanced thermal stability of the modified EIL.These findings revealed that[BBIm][N_(3)]EIL can be a promising candidate for advanced energetic material application.
文摘Foamed combustible material based on polymer bonded RDX was fabricated using CO_2 as foaming agent.The inner structures of felted and foamed combustible materials were presented by SEM. The two materials presented different formulations and inner porous structures. The combustion behaviors of felted and foamed materials were investigated by closed vessel test. Simultaneously, the co-combustion behavior of combustible cartridge case with 7-perf consolidated propellants was also investigated. The results of closed vessel test is applicable to gun system which is made of the foamed combustible material as component.
文摘The combination of 5,5'-bistetrazole-1,1'-diolate(TKX-50) and ammonium perchlorate(AP) can make greater use of the chemical energy of TKX-50 based energetic materials.The research on the interaction mechanism between TKX-50 and AP is very important for designing TKX-50-AP compounds and judging the formation feasibility of composite particles,which can lay a theoretical foundation for the preparation of TKX-50-AP mixed crystals and the application of TKX-50 in propellant,propellant and explosive.Herein,in order to research the interaction mechanism between TKX-50 and AP,density-functional theory calculation was applied to optimize three configurations of TKX-50-AP compounds.The geometry structure,electrostatic potential and binding energy of the compounds were predicted,and the electronic density topological analysis was also carried out.Then TKX-50-AP mixed crystals structures were constructed,and the radial distribution function of H-O and H-N in mixed crystals was calculated.Finally,solvent/non-solvent method was applied to prepare TKX-50-AP composites,and the infrared spectro scopy and the non-isothermal decomposition perfo rmance of the composites were characterized.Results show that the superposition of positive charges in TKX-50 molecule and negative charges in AP makes the electrostatic potential distributions of TKX-50-AP compounds different from that of TKX-50 and AP.The interaction energies of TKX-50-AP 1,TKX-50-AP 2 and TKX-50-AP 3 are 39.743 kJ/mol,61.206 kJ/mol and 27.702 kJ/mol,respectively.The interaction between TKX-50 molecules and AP molecules in TKX-50-AP mixed crystals both depends on hydrogen bonds and van der Waals force,and the number and strength of hydrogen bonds are significantly greater than that of van der Waals force.The composition of AP and TKX-50 makes the absorption peak of the five-membered rings and NH_3 OH^+ of TKX-50 shift to low wavenumber in the infrared spectroscopy.In general,TKX-50 interacts with AP via hydrogen bonds and van der Waals force,and the calculated results are in good agreement with the experimental results.The composition of TKX-50 and AP can also prolong the decomposition process.
文摘The interaction and compatibility between diaminoazofuraz(DAAzF)and some energetic materials are studied by using pressure differential scanning calorimetry(DSC)method.The energetic materials include cyclotetramethylenetetranitramine(HMX),cyclotrimethylenetrinitramine(RDX),nitrocellulose(NC),nitroglycerine(NG),125/100-NC/NG mixture(NC+NG),N-nitrodihydroxyethylaminedinitrate(DINA),aluminum powder(Al),and 3,4-dinitrofurzanfuroxan(DNTF).The results show that there are obvious interactions between DAAzF and DNTF,DINA,HMX or RDX,while weak interactions between DAAzF and NC,NG,NC+NG or Al.According to the evaluated standard of compatibility,the binary systems of DAAzF with NC,NG,NC+NG and Al are compatible,the binary system of it with RDX is slightly sensitive,the binary systems of it with HMX and DINA are sensitive,and the binary system of it with DNTF is hazardous.