A novel element for collimating LED light is designed based on non-imaging optics. It is composed of a refraction lens and a reflector. The upper surface of the lens is freeform and calculated by geometrical optics an...A novel element for collimating LED light is designed based on non-imaging optics. It is composed of a refraction lens and a reflector. The upper surface of the lens is freeform and calculated by geometrical optics and iterative process. The lens makes the rays in the range of 0°-45°from the optical axis collimated. The rays in the range of 45°-90°from the optical axis are collimated by the reflector. The inner surface of the reflector is parabolic with its focus located in the LED chip. The designed element is applicable to LED source of any emitting type. For a certain application, the simulation results of the designed element in Tracepro show that it has a very compact structure and good collimating performance. Just investigating the loss in the lens surfaces, this element has high light output efficiency of nearly 99%. Most lighting area radii are no more than 20 mm when the illuminated plane is 5 m away from the LED source.展开更多
基金supported by the National Natural Science Foundation of China (No.60808028)the National High Technology Research and Development Program (No.2010AA122203)
文摘A novel element for collimating LED light is designed based on non-imaging optics. It is composed of a refraction lens and a reflector. The upper surface of the lens is freeform and calculated by geometrical optics and iterative process. The lens makes the rays in the range of 0°-45°from the optical axis collimated. The rays in the range of 45°-90°from the optical axis are collimated by the reflector. The inner surface of the reflector is parabolic with its focus located in the LED chip. The designed element is applicable to LED source of any emitting type. For a certain application, the simulation results of the designed element in Tracepro show that it has a very compact structure and good collimating performance. Just investigating the loss in the lens surfaces, this element has high light output efficiency of nearly 99%. Most lighting area radii are no more than 20 mm when the illuminated plane is 5 m away from the LED source.