The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. Th...The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. The hot primary air heater, a new technology, is developed to eliminate the cold air from the pulverized coal system. The applications, advantages and disadvantages are introduced in detail for the new device and system. It is concluded that introducing cold air into pulverizer is one of the major factors that causes the exhaust gas temperature of boilers with large capacity to be high. The amount of the cold air could be reduced signif icantly, even to zero in some cases by adopting the hot primary air heater, which drops the exhaust gas temperature of the boiler effectively. The hot primary air heater, which could play part roles of the steam-air heater or the hot air recirculation system, could also be used to adjust the exhaust gas temperature within the range of 20 ℃ by controlling the flow rate of the cooling medium. Moreover, the startup period of the steam-air heater or the hot air recirculation system will be shortened, which is a unique advantage of the hot primary air heater among the measures to drop the exhaust gas temperature.展开更多
With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order t...With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.展开更多
SO_(2)and NO emitted from coal-fired power plants have caused serious air pollution in China.In this study,a test system for NO oxidation using O_(3)is established.The basic characteristics of NO oxidation and product...SO_(2)and NO emitted from coal-fired power plants have caused serious air pollution in China.In this study,a test system for NO oxidation using O_(3)is established.The basic characteristics of NO oxidation and products forms are studied.A separate test system for the combined removal of SO_(2)and NO_(x)is also established,and the absorption characteristics of NO_(x)are studied.The characteristics of NO oxidation and NO_(x)absorption were verified in a 35 t·h^(-1)industrial boiler wet combined desulfurization and denitrification project.The operating economy of ozone oxidation wet denitrification technology is analyzed.The results show that O_(3)has a high rate and strong selectivity for NO oxidation.When O_(3)is insufficient,the primary oxidation product is NO_(2).When O_(3)is present in excess,NO_(2)continues to get oxidized to N_(2)O_(5)or NO_(3).The removal efficiency of NO_(2)in alkaline absorption system is low(only about 15%).NOx removal efficiency can be improved by oxidizing NO_(x)to N_(2)O_(5)or NO_(3)by increasing ozone ratio.When the molar ratio of O_(3)/NO is 1.77,the NOx removal efficiency reaches 90.3%,while the operating cost of removing NO_(x)per kilogram is 6.06 USD(NO_(2)).展开更多
After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa ar...After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.展开更多
The hydropower running and performance can be displayed and analyzed by the real-time remote system. Real-time performance data of the hydraulic turbine unit can be obtained through the analysis of real-time operating...The hydropower running and performance can be displayed and analyzed by the real-time remote system. Real-time performance data of the hydraulic turbine unit can be obtained through the analysis of real-time operating data of the hydraulic turbine unit. It can not only guide significance for long-term operation of hydraulic turbine unit, but also provide a reference for improving the Hydropower hydro efficiency, economic dispatch of hydraulic turbine unit and performance comparison before and after the overhaul.展开更多
In northern China,thermal power units(TPUs)are important in improving the penetration level of renewable energy.In such areas,the potentials of coordinated dispatch of renewable energy sources(RESs)and TPUs can be bet...In northern China,thermal power units(TPUs)are important in improving the penetration level of renewable energy.In such areas,the potentials of coordinated dispatch of renewable energy sources(RESs)and TPUs can be better realized,if RESs and TPUs connected to the power grid at the same point of common coupling(PCC)are dispatched as a coupled system.Firstly,the definition of the coupled system is introduced,followed by an analysis on its characteristics.Secondly,based on the operation characteristics of deep peak regulation(DPR)of TPUs in the coupled system,the constraint of the ladder-type ramping rate applicable for day-ahead dispatch is proposed,and the corresponding flexible spinning reserve constraint is further established.Then,considering these constraints and peak regulation ancillary services,a day-ahead optimal dispatch model of the coupled system is established.Finally,the operational characteristics and advantages of the coupled system are analyzed in several case studies based on a real-world power grid in Liaoning province,China.The numerical results show that the coupled system can further improve the economic benefits of RESs and TPUs under the existing policies.展开更多
The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a...The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cel ular Automaton Finite Element (CAFE) model. The results indicate that the stray grains nucleate at the edges of platform at V=150μm·s-1 and 200μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is signiifcantly dependent on the undercooling and the temperature ifeld distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70μm·s-1 to 200μm·s-1.展开更多
Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density ...Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density to assess wind resource.The present study investigates the estimation errors of the potential and fluctuation of wind resource caused by neglecting the spatial-temporal variation features of air density in China.The air density at 100 m height is accurately calculated by using air temperature,pressure,and humidity.The spatial-temporal variation features of air density are firstly analyzed.Then the wind power generation is modeled based on a 1.5 MW wind turbine model by using the actual air density,standard air densityρst,and local annual average air densityρsite,respectively.Usingρstoverestimates the annual wind energy production(AEP)in 93.6%of the study area.Humidity significantly affects AEP in central and southern China areas.In more than 75%of the study area,the winter to summer differences in AEP are underestimated,but the intra-day peak-valley differences and fluctuation rate of wind power are overestimated.Usingρsitesignificantly reduces the estimation error in AEP.But AEP is still overestimated(0-8.6%)in summer and underestimated(0-11.2%)in winter.Except for southwest China,it is hard to reduce the estimation errors of winter to summer differences in AEP by usingρsite.Usingρsitedistinctly reduces the estimation errors of intra-day peak-valley differences and fluctuation rate of wind power,but these estimation errors cannot be ignored as well.The impacts of air density on assessing wind resource are almost independent of the wind turbine types.展开更多
As a promising option to provide gaseous NH_(3) for SCR system,catalytic urea hydrolysis has aroused great attention,and improving surface area and activity of catalysis are the crucial issues to be solved for efficie...As a promising option to provide gaseous NH_(3) for SCR system,catalytic urea hydrolysis has aroused great attention,and improving surface area and activity of catalysis are the crucial issues to be solved for efficient urea hydrolysis.Therefore,a composite metal oxide(TiO_(2)@Al_(2)O_(3))catalyst was prepared by a simple hydrothermal method,with mesoporous alumina(γ-Al_(2)O_(3))as substrate.The results verify the mesoporous structure and submicron cluster of TiO_(2)@Al_(2)O_(3),with exposed crystal faces of(101)and(400)for TiO_(2)andγ-Al_(2)O_(3),respectively.The electronegativity difference of Ti4+and Al3+changes the charge distribution scheme around the interface,which provides abundant acid/base sites to boost the urea hydrolysis.Consequently,for an optimal proportioning with nano TiO_(2)content at 10 wt.%,the hydrolysis efficiency can reach up to 35.2%at 100℃ in 2 h,increasing by~7.1%than that of the blank experiment.^(13)C NMR spectrum measurements provide the impossible intermediate species during urea hydrolysis.Theoretical calculations are performed to clarify the efficient H_(2)O decomposition at the interface of TiO_(2)@Al_(2)O_(3).The result offers a favorable technology for energy-efficiency urea hydrolysis.展开更多
To investigate the design strategy of highly loaded tandem cascades at both the midspan and endwall,the overall performance and flow mechanisms of four typical tandem cascades based on the optimization were analyzed f...To investigate the design strategy of highly loaded tandem cascades at both the midspan and endwall,the overall performance and flow mechanisms of four typical tandem cascades based on the optimization were analyzed from multiple perspectives numerically.The results show that the interference effects on the Front Blade(FB)and Rear Blade(RB)should not be overlooked during the design phase,and the design strategies at the midspan and endwall are completely different.At the midspan,the optimization aims to increase the interference effects and the strength of the gap jet while maintaining the same load on the FB and RB.However,the endwall optimal airfoil exhibits weakening interference effects,advancement of the gap jet location,and load transfer from the FB to RB.Through further analysis of flow characteristics,the midspan optimal airfoil is beneficial for inhibiting the low-energy fluid from interacting with the suction surface of RB under the design condition,but results in earlier occurrence of corner stall.The endwall optimal airfoil helps suppress the development of the secondary flow and delay the onset of corner stall.Furthermore,by combining the benefits of these two design approaches,additional forward sweep effects are achieved,further enhancing the performance of the tandem cascade.展开更多
Surface moisture or humidity impacting the lubrication property is a ubiquitous phenomenon in tribological systems,which is demonstrated by a combination of molecular dynamics(MD)simulation and experiment for the orga...Surface moisture or humidity impacting the lubrication property is a ubiquitous phenomenon in tribological systems,which is demonstrated by a combination of molecular dynamics(MD)simulation and experiment for the organic friction modifier(OFM)-containing lubricant.The stearic acid and poly-α-olefin 4cSt(PAO4)were chosen as the OFM and base oil molecules,respectively.The physical adsorption indicates that on the moist surface water molecules are preferentially adsorbed on friction surface,and even make OFM adsorption film thoroughly leave surface and mix with base oil.In shear process,the adsorption of water film and desorption OFM film are further enhanced,particularly under higher shear rate.The simulated friction coefficient(that is proportional to shear rate)increases firstly and then decreases with thickening water film,in good agreement with experiments,while the slip length shows a contrary change.The wear increases with humidity due to tribochemistry revealing the continuous formation and removal of Si–O–Si network.The tribological discrepancy of OFM-containing lubricant in dry and humid conditions is attributed to the slip plane’s transformation from the interface between OFM adsorption film and lubricant bulk to the interface between adsorbed water films.This work provides a new thought to understand the boundary lubrication and failure of lubricant in humid environments,likely water is not always harmful in oil lubrication systems.展开更多
The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in...The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in poor combustion performance and high NO_(x) emission,and to co-fire with bituminous coal is a practical strategy to address this problem.However,the co-combustion characteristics and the inherent interaction between semi-coke and coal remain insufficiently understood.In addition,the influences of secondary air arrangement,the boiler operation load,and the fuel type on co-combustion process are still unclear,which is urgent to be further explored.In the present study,experiments and numerical simulations were jointly utilized to inquire into the co-combustion behaviors and NO_(x) emission features of semi-coke and coal.The results demonstrated that the"out-furnace method"was a suitable choice for small-capacity boiler when the proportion of semi-coke was 33%,due to the limited combinations of the semi-coke injection position.It was recommended that semi-coke was preferred to be injected from the middle layers of the furnace under the"in-furnace method"to improve the overall co-combustion performance.The critical value of the separated over fire air ratio in this study was 27.5%,over which a slight drop of carbon content in fly ash could come about.Moreover,the elevation in the proportion of separated over fire air gave rise to the significant decline of NO_(x) concentration.The constricted secondary air arrangement was preferred to be employed due to the high boiler efficiency.The separated over fire air and the surrounding air needed to maintain a wide-open degree to prevent the increase of NO_(x) emissions and the coking of nozzles.For the load reduction regulation method adopted in this study,the NO_(x) concentration first rose and then dropped,while the burnout ratio decreased obviously as the operation load was reduced.Different combinations of coal and semi-coke generated significant influences on co-combustion behaviors within the furnace.The NO_(x )generated by high-volatile fuel (bituminous coal) combustion was mainly affected by volatile-N,while the NO_(x )generated by low-volatile fuel (semi-coke) was mainly impacted by char-N.This study is of guiding significance for the efficient and clean utilization and beneficial to the large-scale application of powder semi-coke in power plants.展开更多
Selective catalytic reduction(SCR)is a major commercial technology for NOx removal in power plants.There are a lot of complex chemical reactions in SCR reactors,and it is of great significance to understand the intern...Selective catalytic reduction(SCR)is a major commercial technology for NOx removal in power plants.There are a lot of complex chemical reactions in SCR reactors,and it is of great significance to understand the internal process of chemical reactions for SCR DeNOx and study the impact of various factors on NOx removal efficiency.In this paper,the impact of reaction temperature,ammonia-nitrogen molar ratio and resident time in the catalyst bed layer on NOx removal efficiency were studied by simulation of chemical reactions.Then calculated results were compared with catalyst activity test data in a power plant,which proved that the simulated results were accurate.As a result,the reaction conditions were optimized in order to get the best removal efficiency of NO,so that we can provide a reference for optimal running of SCR in power plants.展开更多
Infinite coordination polymers are recognized as excellent platform for functionalization.Dithienylethene motifs,which are one of the most attractive functional moieties,were incorporated into an infinite coordination...Infinite coordination polymers are recognized as excellent platform for functionalization.Dithienylethene motifs,which are one of the most attractive functional moieties,were incorporated into an infinite coordination polymer,to deliver a‘‘smart’’porous material that can response to external stimuli.The obtained dithienylethene-based infinite coordination polymers(named Cu-DTEDBA)share the advantages of both infinite coordination polymers(porosity and stability)and dithienylethene motifs(photochromism).The physical and chemical properties of Cu-DTEDBA were characterized by FTIR,TEM,SEM,XRD,TGA,UV–vis,EDX and BET.Moreover,the combination of dithienylethene and infinite coordination polymers gives rise to a synergistic effect,which induces functional behaviors of ammonia sensor applications.Both open and closed forms of Cu-DTEDBA exhibit distinct colorimetric change upon exposure to gaseous ammonia,which is not observed in dithienylethene free molecules.展开更多
文摘The reasons of introducing cold air into pulverizer are analyzed for boilers with large capacity and high parameters. The temperature rises of the exhaust gas are calculated when varying the amount of the cold air. The hot primary air heater, a new technology, is developed to eliminate the cold air from the pulverized coal system. The applications, advantages and disadvantages are introduced in detail for the new device and system. It is concluded that introducing cold air into pulverizer is one of the major factors that causes the exhaust gas temperature of boilers with large capacity to be high. The amount of the cold air could be reduced signif icantly, even to zero in some cases by adopting the hot primary air heater, which drops the exhaust gas temperature of the boiler effectively. The hot primary air heater, which could play part roles of the steam-air heater or the hot air recirculation system, could also be used to adjust the exhaust gas temperature within the range of 20 ℃ by controlling the flow rate of the cooling medium. Moreover, the startup period of the steam-air heater or the hot air recirculation system will be shortened, which is a unique advantage of the hot primary air heater among the measures to drop the exhaust gas temperature.
基金Supported by Joint Foundation of Natural Science Foundation of Jilin Province(No.YDZJ202101ZYTS152).
文摘With the continuous development of new energy generation technology and the increasingly complex power grid environment,the traditional black start scheme cannot meet the requirements of today’s power grid in order to ensure the stable operation of the power system can be restored quickly in the face of large power outages,so a more complete black start scheme needs to be developed to cope with the new power system.With the development of energy storage technology,the limitations of the traditional black-start scheme can be solved by new energy farms with energy storage configuration.Therefore,this paper investigates the problems faced by black-start,the key technologies of energy storage assisted new energy black-start,and introduces the research related to new energy black-start technology to provide reference for future research and application of new energy black-start.
基金Huaneng Group Science and Technology Project(HNKJ17-H14)the Project of National Science and Technology Supporting Plan(2014BAA07B00)for their financial support。
文摘SO_(2)and NO emitted from coal-fired power plants have caused serious air pollution in China.In this study,a test system for NO oxidation using O_(3)is established.The basic characteristics of NO oxidation and products forms are studied.A separate test system for the combined removal of SO_(2)and NO_(x)is also established,and the absorption characteristics of NO_(x)are studied.The characteristics of NO oxidation and NO_(x)absorption were verified in a 35 t·h^(-1)industrial boiler wet combined desulfurization and denitrification project.The operating economy of ozone oxidation wet denitrification technology is analyzed.The results show that O_(3)has a high rate and strong selectivity for NO oxidation.When O_(3)is insufficient,the primary oxidation product is NO_(2).When O_(3)is present in excess,NO_(2)continues to get oxidized to N_(2)O_(5)or NO_(3).The removal efficiency of NO_(2)in alkaline absorption system is low(only about 15%).NOx removal efficiency can be improved by oxidizing NO_(x)to N_(2)O_(5)or NO_(3)by increasing ozone ratio.When the molar ratio of O_(3)/NO is 1.77,the NOx removal efficiency reaches 90.3%,while the operating cost of removing NO_(x)per kilogram is 6.06 USD(NO_(2)).
基金Project(2018BSHQYXMZZ32)supported by the Postdoctoral Science Foundation of Shaanxi Province of ChinaProject(20192109)supported by the State Key Laboratory for Mechanical Behavior of Materials,ChinaProjects(2017M623213,2018M633487)supported by the Postdoctoral Science Foundation of China
文摘After a standard heat treatment,the microstructural evolution with time during isothermal aging at 850°C and its effect on the creep rupture properties of the Ni-base superalloy M4706 at 870°C and 370 MPa are investigated.It is found that as the aging time increases from 0 to 5000 h,the average diameter of coarseγ′increases from 241 to 484 nm,and the distribution of the carbides at grain boundaries changes from discontinuous to continuous.Moreover,experimental observations on the microstructures of all the crept specimens reveal that dislocation bypassing controls the creep deformation.Thus,it is concluded that the transitions in the microstructures result in the degeneration of the creep rupture properties of the experimental alloy with aging time.
文摘The hydropower running and performance can be displayed and analyzed by the real-time remote system. Real-time performance data of the hydraulic turbine unit can be obtained through the analysis of real-time operating data of the hydraulic turbine unit. It can not only guide significance for long-term operation of hydraulic turbine unit, but also provide a reference for improving the Hydropower hydro efficiency, economic dispatch of hydraulic turbine unit and performance comparison before and after the overhaul.
基金supported in part by the National Key Research and Development Program of China(No.2019YFB1505400).
文摘In northern China,thermal power units(TPUs)are important in improving the penetration level of renewable energy.In such areas,the potentials of coordinated dispatch of renewable energy sources(RESs)and TPUs can be better realized,if RESs and TPUs connected to the power grid at the same point of common coupling(PCC)are dispatched as a coupled system.Firstly,the definition of the coupled system is introduced,followed by an analysis on its characteristics.Secondly,based on the operation characteristics of deep peak regulation(DPR)of TPUs in the coupled system,the constraint of the ladder-type ramping rate applicable for day-ahead dispatch is proposed,and the corresponding flexible spinning reserve constraint is further established.Then,considering these constraints and peak regulation ancillary services,a day-ahead optimal dispatch model of the coupled system is established.Finally,the operational characteristics and advantages of the coupled system are analyzed in several case studies based on a real-world power grid in Liaoning province,China.The numerical results show that the coupled system can further improve the economic benefits of RESs and TPUs under the existing policies.
基金financially supported by the fund of the State Key Laboratory of Solidifi cation Processing at NWPU(No.SKLSP201407)
文摘The mechanism of stray grain formation at the platform of turbine blade simulator and the effect of withdrawal rate (V) on the stray grain phenomenon have been investigated using a macro-scale ProCAST coupled with a 3D Cel ular Automaton Finite Element (CAFE) model. The results indicate that the stray grains nucleate at the edges of platform at V=150μm·s-1 and 200μm·s-1. Using ProCAST computer simulation software, it was proven that the stray grain formation is signiifcantly dependent on the undercooling and the temperature ifeld distribution in the platform. The macroscopic curvature of the liquidus isotherm becomes markedly concave with an increase in the withdrawal rate. The probability of stray grain formation at the edges of platform can be increased by increasing the withdrawal rate in the range of 70μm·s-1 to 200μm·s-1.
基金supported by the National Natural Science Foundation of China(Grant No.52107091)the Fundamental Research Funds for the Central Universities(Grant No.2022MS017)the Science and Technology Project of CHINA HUANENG(Offshore wind power and smart energy system,Grant No.HNKJ20-H88)。
文摘Air density plays an important role in assessing wind resource.Air density significantly fluctuates both spatially and temporally.But literature typically used standard air density or local annual average air density to assess wind resource.The present study investigates the estimation errors of the potential and fluctuation of wind resource caused by neglecting the spatial-temporal variation features of air density in China.The air density at 100 m height is accurately calculated by using air temperature,pressure,and humidity.The spatial-temporal variation features of air density are firstly analyzed.Then the wind power generation is modeled based on a 1.5 MW wind turbine model by using the actual air density,standard air densityρst,and local annual average air densityρsite,respectively.Usingρstoverestimates the annual wind energy production(AEP)in 93.6%of the study area.Humidity significantly affects AEP in central and southern China areas.In more than 75%of the study area,the winter to summer differences in AEP are underestimated,but the intra-day peak-valley differences and fluctuation rate of wind power are overestimated.Usingρsitesignificantly reduces the estimation error in AEP.But AEP is still overestimated(0-8.6%)in summer and underestimated(0-11.2%)in winter.Except for southwest China,it is hard to reduce the estimation errors of winter to summer differences in AEP by usingρsite.Usingρsitedistinctly reduces the estimation errors of intra-day peak-valley differences and fluctuation rate of wind power,but these estimation errors cannot be ignored as well.The impacts of air density on assessing wind resource are almost independent of the wind turbine types.
基金supported by the Science and Technology Projects of China Huaneng Group Co.,Ltd.(No.HNKJ21-H15)the National Natural Science Foundation of China(No.22106084)the Special Projects of China Postdoctoral Science Foundation(No.2022T150350).
文摘As a promising option to provide gaseous NH_(3) for SCR system,catalytic urea hydrolysis has aroused great attention,and improving surface area and activity of catalysis are the crucial issues to be solved for efficient urea hydrolysis.Therefore,a composite metal oxide(TiO_(2)@Al_(2)O_(3))catalyst was prepared by a simple hydrothermal method,with mesoporous alumina(γ-Al_(2)O_(3))as substrate.The results verify the mesoporous structure and submicron cluster of TiO_(2)@Al_(2)O_(3),with exposed crystal faces of(101)and(400)for TiO_(2)andγ-Al_(2)O_(3),respectively.The electronegativity difference of Ti4+and Al3+changes the charge distribution scheme around the interface,which provides abundant acid/base sites to boost the urea hydrolysis.Consequently,for an optimal proportioning with nano TiO_(2)content at 10 wt.%,the hydrolysis efficiency can reach up to 35.2%at 100℃ in 2 h,increasing by~7.1%than that of the blank experiment.^(13)C NMR spectrum measurements provide the impossible intermediate species during urea hydrolysis.Theoretical calculations are performed to clarify the efficient H_(2)O decomposition at the interface of TiO_(2)@Al_(2)O_(3).The result offers a favorable technology for energy-efficiency urea hydrolysis.
基金sponsored by the National Natural Science Foundation of China(Nos.52106057 and 92152301)the Fundamental Research Funds for the Central Universities,China(No.D5000210483)+2 种基金the Foundation of State Level Key Laboratory of Airfoil and Cascade Aerodynamics,China(Nos.D5150210006 and D5050220008)the 111 Project,China(No.B17037)the Key Laboratory of Flow Visualization and Measurement Techniques,AVIC Aerodynamics Research Institute,China(No.D5110220177).
文摘To investigate the design strategy of highly loaded tandem cascades at both the midspan and endwall,the overall performance and flow mechanisms of four typical tandem cascades based on the optimization were analyzed from multiple perspectives numerically.The results show that the interference effects on the Front Blade(FB)and Rear Blade(RB)should not be overlooked during the design phase,and the design strategies at the midspan and endwall are completely different.At the midspan,the optimization aims to increase the interference effects and the strength of the gap jet while maintaining the same load on the FB and RB.However,the endwall optimal airfoil exhibits weakening interference effects,advancement of the gap jet location,and load transfer from the FB to RB.Through further analysis of flow characteristics,the midspan optimal airfoil is beneficial for inhibiting the low-energy fluid from interacting with the suction surface of RB under the design condition,but results in earlier occurrence of corner stall.The endwall optimal airfoil helps suppress the development of the secondary flow and delay the onset of corner stall.Furthermore,by combining the benefits of these two design approaches,additional forward sweep effects are achieved,further enhancing the performance of the tandem cascade.
基金the financial support from the National Natural Science Foundation of China(52105210)Project funded by China Postdoctoral Science Foundation(2022M712593)+1 种基金Research Fund of the State Key Laboratory of Solidification Processing(NPU)(2021-TS-06)Zhejiang Provincial Natural Science Foundation of China(Key Program,Grant No.LZ21A020001).
文摘Surface moisture or humidity impacting the lubrication property is a ubiquitous phenomenon in tribological systems,which is demonstrated by a combination of molecular dynamics(MD)simulation and experiment for the organic friction modifier(OFM)-containing lubricant.The stearic acid and poly-α-olefin 4cSt(PAO4)were chosen as the OFM and base oil molecules,respectively.The physical adsorption indicates that on the moist surface water molecules are preferentially adsorbed on friction surface,and even make OFM adsorption film thoroughly leave surface and mix with base oil.In shear process,the adsorption of water film and desorption OFM film are further enhanced,particularly under higher shear rate.The simulated friction coefficient(that is proportional to shear rate)increases firstly and then decreases with thickening water film,in good agreement with experiments,while the slip length shows a contrary change.The wear increases with humidity due to tribochemistry revealing the continuous formation and removal of Si–O–Si network.The tribological discrepancy of OFM-containing lubricant in dry and humid conditions is attributed to the slip plane’s transformation from the interface between OFM adsorption film and lubricant bulk to the interface between adsorbed water films.This work provides a new thought to understand the boundary lubrication and failure of lubricant in humid environments,likely water is not always harmful in oil lubrication systems.
基金financial support from the National Key R&D Program of China (2017YFB0602003)。
文摘The utilization of powdery semi-coke as a power fuel in pulverized coal-fired power plants has become a new and potential technique to consume the excess powdery semi-coke.The characteristic of low volatile results in poor combustion performance and high NO_(x) emission,and to co-fire with bituminous coal is a practical strategy to address this problem.However,the co-combustion characteristics and the inherent interaction between semi-coke and coal remain insufficiently understood.In addition,the influences of secondary air arrangement,the boiler operation load,and the fuel type on co-combustion process are still unclear,which is urgent to be further explored.In the present study,experiments and numerical simulations were jointly utilized to inquire into the co-combustion behaviors and NO_(x) emission features of semi-coke and coal.The results demonstrated that the"out-furnace method"was a suitable choice for small-capacity boiler when the proportion of semi-coke was 33%,due to the limited combinations of the semi-coke injection position.It was recommended that semi-coke was preferred to be injected from the middle layers of the furnace under the"in-furnace method"to improve the overall co-combustion performance.The critical value of the separated over fire air ratio in this study was 27.5%,over which a slight drop of carbon content in fly ash could come about.Moreover,the elevation in the proportion of separated over fire air gave rise to the significant decline of NO_(x) concentration.The constricted secondary air arrangement was preferred to be employed due to the high boiler efficiency.The separated over fire air and the surrounding air needed to maintain a wide-open degree to prevent the increase of NO_(x) emissions and the coking of nozzles.For the load reduction regulation method adopted in this study,the NO_(x) concentration first rose and then dropped,while the burnout ratio decreased obviously as the operation load was reduced.Different combinations of coal and semi-coke generated significant influences on co-combustion behaviors within the furnace.The NO_(x )generated by high-volatile fuel (bituminous coal) combustion was mainly affected by volatile-N,while the NO_(x )generated by low-volatile fuel (semi-coke) was mainly impacted by char-N.This study is of guiding significance for the efficient and clean utilization and beneficial to the large-scale application of powder semi-coke in power plants.
基金the National Basic Research Program of China(973 Program)(Grant No.2005CB221206)the National High-tech Research and Development of China(863 Program)(Grant No.2007AA05Z309)the special fund for“The Development and Engineering Application of DeNOx Catalysts in Coal-fired Power Plants”by scientific research institutes and Projects in China,the HuaNeng Group Program(HNKJ07-G03)and(HNKJ08-H09)of China for their financial support to carry out this study.
文摘Selective catalytic reduction(SCR)is a major commercial technology for NOx removal in power plants.There are a lot of complex chemical reactions in SCR reactors,and it is of great significance to understand the internal process of chemical reactions for SCR DeNOx and study the impact of various factors on NOx removal efficiency.In this paper,the impact of reaction temperature,ammonia-nitrogen molar ratio and resident time in the catalyst bed layer on NOx removal efficiency were studied by simulation of chemical reactions.Then calculated results were compared with catalyst activity test data in a power plant,which proved that the simulated results were accurate.As a result,the reaction conditions were optimized in order to get the best removal efficiency of NO,so that we can provide a reference for optimal running of SCR in power plants.
基金supported by National Basic Research Program of China (No. 2013CB733501)National Natural Science Foundation of China (Nos. 91334203, 21376074, 21402050)Fundamental Research Funds for the Central Universities of China (No. WK1314008)
文摘Infinite coordination polymers are recognized as excellent platform for functionalization.Dithienylethene motifs,which are one of the most attractive functional moieties,were incorporated into an infinite coordination polymer,to deliver a‘‘smart’’porous material that can response to external stimuli.The obtained dithienylethene-based infinite coordination polymers(named Cu-DTEDBA)share the advantages of both infinite coordination polymers(porosity and stability)and dithienylethene motifs(photochromism).The physical and chemical properties of Cu-DTEDBA were characterized by FTIR,TEM,SEM,XRD,TGA,UV–vis,EDX and BET.Moreover,the combination of dithienylethene and infinite coordination polymers gives rise to a synergistic effect,which induces functional behaviors of ammonia sensor applications.Both open and closed forms of Cu-DTEDBA exhibit distinct colorimetric change upon exposure to gaseous ammonia,which is not observed in dithienylethene free molecules.