The flow past a fixed single transmission conductor and the related heat transfer characteristics are investigated using computational fluid dynamics and a relevant turbulence model.After validating the method through...The flow past a fixed single transmission conductor and the related heat transfer characteristics are investigated using computational fluid dynamics and a relevant turbulence model.After validating the method through comparison with relevant results in the literature,this thermofluid-dynamic problem is addressed considering different working conditions.It is shown that the resistance coefficient depends on the Reynolds number.As expected,the Nusselt number is also affected by Reynolds number.In particular,the Nusselt number under constant heat flux is always greater than that under a constant wall temperature.展开更多
文摘The flow past a fixed single transmission conductor and the related heat transfer characteristics are investigated using computational fluid dynamics and a relevant turbulence model.After validating the method through comparison with relevant results in the literature,this thermofluid-dynamic problem is addressed considering different working conditions.It is shown that the resistance coefficient depends on the Reynolds number.As expected,the Nusselt number is also affected by Reynolds number.In particular,the Nusselt number under constant heat flux is always greater than that under a constant wall temperature.