期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
One-pot synthesis of 2,5-bis(hydroxymethyl)furan from biomass derived 5-(chloromethyl)furfural in high yield 被引量:1
1
作者 Binglin Chen Yunchao Feng +9 位作者 Sen Ma Weizhen Xie Guihua Yan Zheng Li Jonathan Sperry Shuliang Yang Xing Tang Yong Sun Lu Lin Xianhai Zeng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期421-428,I0011,共9页
5-(Chloromethyl)furfural(CMF),as a new platform molecular,has become a hot topic in the field of biorefinery.Herein,the one-pot conversion of CMF to 2,5-bis(hydroxymethyl)furan(BHMF)in the water phase was demonstrated... 5-(Chloromethyl)furfural(CMF),as a new platform molecular,has become a hot topic in the field of biorefinery.Herein,the one-pot conversion of CMF to 2,5-bis(hydroxymethyl)furan(BHMF)in the water phase was demonstrated for the first time.A 91%BHMF yield was obtained over Ru/Cu Oxcatalyst,and BHMF was mainly produced by the consecutive hydrolysis and hydrogenation of CMF with 5-hydroxymethylfurfural(HMF)as an intermediate.Kinetic studies revealed that the conversion of HMF to BHMF was the rate-determining step.Remarkably,the characterizations and density functional theory(DFT)calculations further revealed the lower electron density of Ru NPs in Ru/Cu Oxcatalyst,resulting in a larger adsorption energy and a smaller free energy difference for the formation of alcohols.The present findings offered a new pathway for biomass-derived diol production through CMF as a potential source. 展开更多
关键词 2 5-Bis(hydroxymethyl)furan Hydrolysis Hydrogenation Biomass conversion Heterogeneous catalysis
下载PDF
Catalyst design strategy toward the efficient heterogeneously-catalyzed selective oxidation of 5-hydroxymethylfurfural
2
作者 Huai Liu Xing Tang +5 位作者 Xianhai Zeng Yong Sun Xixian Ke Tianyuan Li Jiaren Zhang Lu Lin 《Green Energy & Environment》 SCIE EI CSCD 2022年第5期900-932,共33页
The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymeth... The selective oxidation of 5-hydroxymethylfurfural(HMF),a versatile bio-based platform molecule,leads to the formation of several intriguing and useful downstream chemicals,such as 2,5-diformylfuran(DFF),5-hydroxymethyl-2-furancarboxylic acid(HMFCA),formyl 2-furancarboxylic acid(FFCA),2,5-furandicarboxylic acid(FDCA) and furan-2,5-dimethylcarboxylate(FDMC).These products have been extensively employed to fabricate novel polymers,pharmaceuticals,sustainable dyes and many other value-added fine chemicals.The heart of the developed HMF oxidation processes is always the catalyst.In this regard,this review comprehensively summarized the established heterogeneous catalyst design strategy for the selective oxidation of HMF via thermo-catalysis.Particular attention has been focused on the reaction mechanism of HMF oxidation over different catalysts as well as enhancing the catalytic performance of the catalyst through manipulating the properties of the support and fabricating of multi-component metal nano-particles and oxides.The current challenges and possible research directions for the catalytic oxidation of HMF in the future are also discussed. 展开更多
关键词 HYDROXYMETHYL CATALYST CATALYZED
下载PDF
Catalytic transfer hydrogenation of biomass-derived furfural to furfuryl alcohol with formic acid as hydrogen donor over CuCs-MCM catalyst 被引量:2
3
作者 Tao Wang Juan Du +5 位作者 Yong Sun Xing Tang Zuo-Jun Wei Xianhai Zeng Shi-Jie Liu Lu Lin 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第3期1186-1190,共5页
Catalytic transfer hydroge nation(CTH)of furfural(FF)to furfu ryl alcohol(FFA)has received great intere st in recent years.He rein,Cu-Cs bimetallic supported catalyst,CuCs(2)-MCM,was developed for the CTH of FF to FFA... Catalytic transfer hydroge nation(CTH)of furfural(FF)to furfu ryl alcohol(FFA)has received great intere st in recent years.He rein,Cu-Cs bimetallic supported catalyst,CuCs(2)-MCM,was developed for the CTH of FF to FFA using formic as hydrogen donor.CuCs(2)-MCM achieved a 99.6%FFA yield at an optimized reaction conditions of 170℃,1 h.Cu species in CuCs(2)-MCM had dual functions in catalytically decomposing formic acid to generate hydrogen and hydrogenating FF to FFA.The doping of Cs made the size of Cu particles smaller and improved the dispersion of the Cu active sites.Impo rtantly,the Cs species played a favorable role in enhancing the hydrogenation activity as a promoter by adjusting the surface acidity of Cu species to an appropriate level.Correlation analysis showed that surface acidity is the primary factor to affect the catalytic activity of CuCs(2)-MCM. 展开更多
关键词 FURFURAL Furfuryl alcohol CuCs(x)-MCM catalysts Catalytic transfer hydrogenation Formic acid
原文传递
Construction of Synergistic Co and Cu Diatomic Sites for Enhanced Higher Alcohol Synthesis
4
作者 Gaofeng Chen Olga A.Syzgantseva +12 位作者 Maria A.Syzgantseva Shuliang Yang Guihua Yan Li Peng Changyan Cao Wenxing Chen Zhiwei Wang Fengjuan Qin Tingzhou Lei Xianhai Zeng Lu Lin Weiguo Song Buxing Han 《CCS Chemistry》 CSCD 2023年第4期851-864,共14页
Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selec... Higher alcohol synthesis(HAS)from syngas could efficiently alleviate the dependence on the traditional fossil resources.However,it is still challenging to construct high-performance HAS catalysts with satisfying selectivity,space–time yield(STY),and stability.Herein,we designed a diatomic catalyst by anchoring Co and Cu sites onto a hierarchical porous N-doped carbon matrix(Co/Cu–N–C).The Co/Cu–N–C is efficient for HAS and is among the best catalysts reported.With a COconversion of 81.7%,C2+OHselectivity could reach 58.5%with an outstanding C2+OH STY of 851.8 mg/g·h.We found that the N4–Co1 and Cu1–N4 showed an excellent synergistic effect.The adsorption of CO occurred on the Co site,and the surrounding nitrogen sites served as a hydrogen reservoir for the CO reduction reactions to form CHxCo.Meanwhile,the Cu sites stabilized a CHOCu species to interact with CHxCo,facilitating a barrier-free formation of C2 species,which is responsible for the high selectivity of higher alcohols. 展开更多
关键词 dual atomic catalyst synergistic effect heterogeneous catalysis carbonmaterial higher alcohol synthesis
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部