TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided...TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA.展开更多
The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challengi...The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.展开更多
基金supported by National Science Foundation of China(Grant No.52075152)Xining Big Data Service Administration.
文摘TheHoney Badger Algorithm(HBA)is a novelmeta-heuristic algorithm proposed recently inspired by the foraging behavior of honey badgers.The dynamic search behavior of honey badgers with sniffing and wandering is divided into exploration and exploitation in HBA,which has been applied in photovoltaic systems and optimization problems effectively.However,HBA tends to suffer from the local optimum and low convergence.To alleviate these challenges,an improved HBA(IHBA)through fusing multi-strategies is presented in the paper.It introduces Tent chaotic mapping and composite mutation factors to HBA,meanwhile,the random control parameter is improved,moreover,a diversified updating strategy of position is put forward to enhance the advantage between exploration and exploitation.IHBA is compared with 7 meta-heuristic algorithms in 10 benchmark functions and 5 engineering problems.The Wilcoxon Rank-sum Test,Friedman Test and Mann-WhitneyU Test are conducted after emulation.The results indicate the competitiveness and merits of the IHBA,which has better solution quality and convergence traits.The source code is currently available from:https://github.com/zhaotao789/IHBA.
基金supported by National Natural Science Foundation of China(Grant Nos.62376089,62302153,62302154,62202147)the key Research and Development Program of Hubei Province,China(Grant No.2023BEB024).
文摘The world produces vast quantities of high-dimensional multi-semantic data.However,extracting valuable information from such a large amount of high-dimensional and multi-label data is undoubtedly arduous and challenging.Feature selection aims to mitigate the adverse impacts of high dimensionality in multi-label data by eliminating redundant and irrelevant features.The ant colony optimization algorithm has demonstrated encouraging outcomes in multi-label feature selection,because of its simplicity,efficiency,and similarity to reinforcement learning.Nevertheless,existing methods do not consider crucial correlation information,such as dynamic redundancy and label correlation.To tackle these concerns,the paper proposes a multi-label feature selection technique based on ant colony optimization algorithm(MFACO),focusing on dynamic redundancy and label correlation.Initially,the dynamic redundancy is assessed between the selected feature subset and potential features.Meanwhile,the ant colony optimization algorithm extracts label correlation from the label set,which is then combined into the heuristic factor as label weights.Experimental results demonstrate that our proposed strategies can effectively enhance the optimal search ability of ant colony,outperforming the other algorithms involved in the paper.