To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain ...To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.展开更多
The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the L...The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering.展开更多
Based on the analyses of data obtained from the underground powerhouse at Jinping I hydropower station, a comprehensive review of engineering rock mechanics practice in the underground powerhouse is first conducted. T...Based on the analyses of data obtained from the underground powerhouse at Jinping I hydropower station, a comprehensive review of engineering rock mechanics practice in the underground powerhouse is first conducted. The distribution of strata, lithology, and initial geo-stress, the excavation process and corresponding rock mass support measures, the deformation and failure characteristics of the surrounding rock mass, the stress characteristics of anchorage structures in the cavern complex, and numerical simulations of surrounding rock mass stability and anchor support performance are presented. The results indicate that the underground powerhouse of Jinping I hydropower station is characterized by high to extremely high geo-stresses during rock excavation. Excessive surrounding rock mass deformation and high stress of anchorage structures, surrounding rock mass unloading damage, and local cracking failure of surrounding rock masses, etc., are mainly caused by rock mass excavation. Deformations of surrounding rock masses and stresses in anchorage structures here are larger than those found elsewhere: 20% of extensometers in the main powerhouse record more than 50 mm with the maximum at around 250 mm observed in the downstream sidewall of the transformer hall. There are about 25% of the anchor bolts having recorded stresses of more than 200 MPa. Jinping I hydropower plant is the first to have an underground powerhouse construction conducted in host rocks under extremely high geo-stress conditions, with the ratio of rock mass strength to geo-stress of less than 2.0. The results can provide a reference to underground powerhouse construction in similar geological conditions.展开更多
To study the stress, deformation, and seepage pressure during the initial impoundment of the Jinping-I Arch Dam, monitoring analysis and numerical calculation were used in a dam behavior analysis that focused on the w...To study the stress, deformation, and seepage pressure during the initial impoundment of the Jinping-I Arch Dam, monitoring analysis and numerical calculation were used in a dam behavior analysis that focused on the working behavior of the dam during the late period of the initial impoundment up to the end of November 2014. The numerical calculation was performed based on feedback analysis of the deformation and stress of the arch dam through inversion of the elastic moduli(E) of the dam body and foundation, using a three-dimensional finite element model for the linear elastic material of the arch dam. The main monitoring indices presented insignificant changes in the late period of the initial impoundment, and the results of feedback analysis were consistent with monitoring results. Analysis results also show that the deformations of the dam body and dam foundation were within the design range; the dam stress distributions were normal, with values lower than the design control criteria; and the seepage flows through the dam body and dam foundation were lower than the design drainage capacity of the deep-well pump house, demonstrating that the Jinping-I Arch Dam was in good working condition, and the initial impoundment had been successfully completed. The results of the working behavior analysis of the Jinping-I hydropower project during the initial impoundment can provide references for safe operation of similar projects.展开更多
The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an unde...The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an underground cavens with 2400 m depth.Based on the disk samples in several boreholes with different diameters,both macro-and micro-morphological characteristics of core-disks’break surface were analysis,using 3D optical scanning and electron microscope scanning.Moreover,the numerical back analysis was also used to simulate the drilling process for demonstrating the development of core disking.The in-situ experiment results showed that the failure types of core disking consisted of tensile break and shear break,i.e.,the shear break usually appears in the edge part of break surface,and tensile break appears in the central part.What’s more,the ration of core-disks thickness to borehole diameter is in a relatively stable range.Numerical back analysis indicated this micro asynchronous break of hard marble is induced by high geostress and unloading drill.展开更多
Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network mode...Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.展开更多
The uniform settle caused by the permafrost creep is still the primary problem of engineering construction in cold region.To investigate the creep characteristics of frozen soils mixed with silty clay and coarse-grain...The uniform settle caused by the permafrost creep is still the primary problem of engineering construction in cold region.To investigate the creep characteristics of frozen soils mixed with silty clay and coarse-grained sand,several triaxial creep tests of frozen mixed soils under different conditions(temperature,confining pressure,coarse-grained particle content) were performed,and the effects of the temperature,confining pressure and coarse particle content on the creep characteristics of frozen mixed soils were also analyzed.The results of the experiments indicated that when the confining pressure was low,the specimen exhibited an attenuation creep under a low-stress level(0.4-0.7) and a non-attenuation creep under a high-stress level(0.7-0.9).In contrast,when the confining pressure was high,the specimen had both initial and stable creep stages,but no the accelerated creep stage.The higher the content of coarse grains,the shorter the stable creep stage,and the easier to enter the accelerated creep stage for the specimen.Further,the long-term strength of frozen soils decreased with an increase in the content of coarse grains.Finally,a newly improved Nishihara model was proposed to consider both the hardening effect and damage effect by introducing both the hardening and damage variables,which can model the entire creep process of frozen soils modeled relatively easily.It was found that with the increasing content of coarse particle,both the strengthening and damaged effects in the creep process are reduced。展开更多
The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of proje...The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of projects.Lianghekou Hydropower Station(LHS),is a controlling station with the largest installed capacity among the 7 middle reach projects in the Yalong River,the secondary tributary of the Yangtze River.LHS is located in a seasonally frozen soil area.Based on the measured data of air and ground temperature in winter in the dam core wall,the freezing-thawing variation of gravelly soil and contact clay during the filling process of the core wall are compared and analyzed,then the main impact factors of the freezing-thawing variation of soils are discussed.The results show that under the influence of air temperature,soil freezes unidirectionally from ground surface downward and deepens gradually,and the thawing processes are different at the aspects of thawing direction and rate.Air temperature and physical properties of soil including soil type,moisture content and dry density affect the freezingthawing processes of soils.And the impact of engineering construction is more remarkable than natural factors.The engineering construction affects soil temperature and freezing-thawing process by controlling the initial temperature of soil,the speed and duration of the technological conversion of paving,compaction,and the length of placed duration at night.Due to the long placed duration of soil with the slow construction method,the initial temperature of soil gradually reduces,the heat transfer process inside soil is fast.Then the internal heat of soil releases,the decreasing rate of ground temperature of soil at different depths is fast and the frozen depth deepens.While due to the short placed duration of soil with the rapid construction process,the initial temperature of soil is high,high internal heat of soil is supplied every day,and the heat transfer process inside soil is slow.Then the decreasing rate of temperature of soil at different depths is slow,and the variation amplitude of frozen depth is small.This study provides useful guidance for the freezingthawing prevention during the construction process of core wall dams located at high altitude region in winter.展开更多
In experiments searching for rare signals,background events from the detector itself are some of the major factors limiting search sensitivity.Screening for ultra-low radioactive detector materials is becoming ever mo...In experiments searching for rare signals,background events from the detector itself are some of the major factors limiting search sensitivity.Screening for ultra-low radioactive detector materials is becoming ever more essential.We propose to develop a gaseous time projection chamber(TPC)with a Micromegas readout for radio screening.The TPC records three-dimensional trajectories of charged particles emitted from a flat sample placed in the active volume of the detector.The detector can distinguish the origin of an event and identify the particle types with information from trajectories,which significantly increases the screening sensitivity.For a particles from the sample surface,we observe that our proposed detector can reach a sensitivity higher than 100 l Bq m-2 within two days.展开更多
In our published letter,[1]we have identified a minor error in Figs.2 and 3.Instead,we have 2111 events in these two plots with 646,249,382,and 834 events in Run 9(20.0 ton·day),Run 10(19.4 ton·day),Run 11–...In our published letter,[1]we have identified a minor error in Figs.2 and 3.Instead,we have 2111 events in these two plots with 646,249,382,and 834 events in Run 9(20.0 ton·day),Run 10(19.4 ton·day),Run 11–1(24.2 ton·day),and Run 11–2(37.1 ton·day).The mistake is due to an incorrect application of a small energy non-linearity(known as the BLS non-linearity)in making plots,but has no impact to the final results.Figures 2 and 3 are now updated in this note.展开更多
When filling embankment dams in cold regions,engineers must solve two freeze–thaw cycle(FTC)-induced soil problems.First,compacted soil constituting the dam is subjected to the FTC during dam construction.Second,loos...When filling embankment dams in cold regions,engineers must solve two freeze–thaw cycle(FTC)-induced soil problems.First,compacted soil constituting the dam is subjected to the FTC during dam construction.Second,loose soil material(LSM),which is subjected to the FTC,fills the dam.To investigate the effects of the aforementioned two problems on the hydraulic conductivity of compacted clayey soil,a series of permeation tests on clayey soil compacted before and after FTC were conducted in this study.The results showed that for the first problem,the hydraulic conductivity of compacted clayey soil subjected to one FTC significantly increases by two to three orders of magnitude because FTC-induced cracks can cause preferential flow in the permeation process.For the second problem,when the FTC number is less than a critical number,the FTC of the LSM may result in the development of united soil particles,thereby increasing the effective porosity ratio and hydraulic conductivity of the compacted soil.It was discovered that the hydraulic conductivity of compacted soil can increase by one to three times when the LSM is subjected to 10 FTCs.When the FTC number exceeds a critical number,the effective porosity ratio and hydraulic conductivity of the compacted soil may decrease with the FTC of the LSM.This should be investigated in future studies,and the results can be used to improve engineering management processes when filling embankment dams during winter in cold regions.展开更多
To investigate the tidal effects on intra-continental earthquake initiation in the Tibetan Plateau and its surrounding areas,we selected over 1,500 focal mechanism solutions of inland earthquakes(epicenter locates at ...To investigate the tidal effects on intra-continental earthquake initiation in the Tibetan Plateau and its surrounding areas,we selected over 1,500 focal mechanism solutions of inland earthquakes(epicenter locates at least 100 km to the coastlines)from Global Centroid Moment Tensor(GCMT)project and analyzed the values of tidal normal and shear stress as well as tidal Coulomb failure stress.For Coulomb failure stress calculation,we used Coulomb 3.40 software.We find that:(1)p-values of tidal stress change suggests a high tidal correlation of earthquake imitations with tidal normal stress change;(2)when tidal normal stress reached the local maximum values of compression and when tidal shear stress were closed to the positive peaks,earthquakes generated more frequently;(3)particular seismogenic environments such as strong continental plate interactions and the existence of fluids or rheologic substance possibly raise the tidal correlations and(4)higher sensitivity of earthquake initiation to earth tide presents along with higher seismicity,suggesting the rate of rain energy accumulation somehow has a dominating effect on the tidal correlation of earthquake initiation.展开更多
We report a search for new physics signals using the low energy electron recoil events in the complete data set from PandaX-Ⅱ,in light of the recent event excess reported by XENON1 T.The data correspond to a total ex...We report a search for new physics signals using the low energy electron recoil events in the complete data set from PandaX-Ⅱ,in light of the recent event excess reported by XENON1 T.The data correspond to a total exposure of 100.7 ton·day with liquid xenon.With robust estimates of the dominant background spectra,we perform sensitive searches on solar axions and neutrinos with enhanced magnetic moment.It is found that the axionelectron coupling gAe<4.6×10^(-12) for an axion mass less than 0.1 keV/c^(2) and the neutrino magnetic moment μv<4.9×10^(-11)μB at 90%confidence level.The observed excess from XENON1 T is within our experimental constraints.展开更多
Dark matter(DM)is a major constituent of the Universe.However,no definite evidence of DM particles(denoted as“χ”)has been found in DM direct detection(DD)experiments to date.There is a novel concept of detectingχf...Dark matter(DM)is a major constituent of the Universe.However,no definite evidence of DM particles(denoted as“χ”)has been found in DM direct detection(DD)experiments to date.There is a novel concept of detectingχfrom evaporating primordial black holes(PBHs).We search forχemitted from PBHs by investigating their interaction with target electrons.The examined PBH masses range from 1×10^(15)to 7×10^(16)g under the current limits of PBH abundance fPBH.Using 205.4 kg·day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory,we exclude theχ-electron(χ-e)elastic-scattering cross sectionσ_(χe)~5×10^(-29)cm^(2)forχwith a mass■keV from our results.With the higher radiation background but lower energy threshold(160 eV),CDEX-10 fills a part of the gap in the previous work.If(m_(χ),σ_(χe))can be determined in the future,DD experiments are expected to impose strong constraints on fPBHfor large MPBHs.展开更多
We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A...We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.展开更多
Neutrinos from core-collapse supernovae are essential for understanding neutrino physics and stellar evolution.Dual-phase xenon dark matter detectors can be used to track explosions of galactic supernovae by detecting...Neutrinos from core-collapse supernovae are essential for understanding neutrino physics and stellar evolution.Dual-phase xenon dark matter detectors can be used to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings.In this study,a variation of progenitor masses and explosion models are assumed to predict neutrino fluxes and spectra,which result in the number of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc over a 10-s duration with negligible backgrounds at PandaX-4T.Two specialized triggering alarms for monitoring supernova burst neutrinos are built.The efficiency of detecting supernova explosions at various distances in the Milky Way is estimated.These alarms will be implemented in the real-time supernova monitoring system at PandaX-4T in the near future,which will provide supernova early warnings for the astronomical community.展开更多
Signal reconstruction through software processing is a crucial component of the background and signal models in the PandaX-4T experiment,which is a multi-tonne dark matter direct search experiment.The accuracy of sign...Signal reconstruction through software processing is a crucial component of the background and signal models in the PandaX-4T experiment,which is a multi-tonne dark matter direct search experiment.The accuracy of signal reconstruction is influenced by various detector artifacts,including noise,dark count of photomultiplier,photoionization of impurities in the detector,and other relevant considerations.In this study,we presented a detailed description of a semi-data-driven approach designed to simulate a signal waveform.This work provides a reliable model for the efficiency and bias of the signal reconstruction in the data analysis of PandaX-4T.By comparing critical variables that relate to the temporal shape and hit pattern of the signals,we found good agreement between the simulation and data.展开更多
The proton-proton(pp)fusion chain dominates the neutrino production in the Sun.The uncertainty of the predicted pp neutrino flux is at the sub-percent level,whereas that of the best measurement is O(10%).In this study...The proton-proton(pp)fusion chain dominates the neutrino production in the Sun.The uncertainty of the predicted pp neutrino flux is at the sub-percent level,whereas that of the best measurement is O(10%).In this study,for the first time,we measure solar pp neutrinos in the electron recoil energy range from 24 to 144 keV using the PandaX-4T commissioning data with 0.63 tonne×year exposure.The pp neutrino flux is determined as(8.0±3.9(stat)±10.0(syst))×1010 s^(-1)cm^(-2),which is consistent with the Standard Solar Model and existing measurements,corresponding to an upper flux limit of 23.3×10^(10)s^(-1)cm^(-2)at 90%C.L..展开更多
Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of...Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China.It is unclear how artificially bred SW adapts to the changeable wild environment post-release,after being in a controlled and very different artificial environment.Thus,the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0(before release),5,10,15,20,25,and 30 after release to the lower reaches of the Yalong River.The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5,and this feeding habit is gradually stabilized at day 15.Prior to release,Fusobacteria are the dominant bacteria in the gut microbiota of SW,while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release.The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild.Overall,the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW.This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.展开更多
Purpose Low-radioactive material screening is becoming essential for rare event search experiments,such as neutrinoless double beta decay and dark matter searches in underground laboratories.A gaseous time projection ...Purpose Low-radioactive material screening is becoming essential for rare event search experiments,such as neutrinoless double beta decay and dark matter searches in underground laboratories.A gaseous time projection chamber(TPC)can be used for such purposes with large active areas and high efficiency.Methods A gaseous TPC with a Micromegas readout plane of approximately 20×20 cm^(2)is successfully constructed for surface alpha contamination measurements.Results We have characterized the energy resolution,gain stability,and tracking capability with calibration sources.Conclusion With the unique track-related background suppression cuts of the gaseous TPC,we have established that the alpha background rate of the TPC is(0.13±0.03)×10^(−6)Bq/cm^(2),comparable to the leading commercial solutions.展开更多
基金supported by the National Natural Science Foundation of China(No.U1965203).
文摘To reveal the dynamic mechanical characteristics of deep rocks,a series of impact tests under triaxial static stress states corresponding to depths of 300-2400 m were conducted.The results showed that both the strain rates and the stress environments in depth significantly affect the mechanical characteristics of rocks.The sensitivity of strain rate to the dynamic strength and deformation modulus shows a negative correlation with depth,indicating that producing penetrative cracks in deep environments is more difficult when damage occurs.The dynamic strength shows a tendency to decrease and then increase slightly,but decreases sharply finally.Transmissivity demonstrates a similar trend as that of strength,whereas reflectivity indicates the opposite trend.Furthermore,two critical depths with high dynamically induced hazard possibilities based on the China Jinping Underground Laboratory(CJPL)were proposed for deep engineering.The first critical depth is 600-900 m,beyond which the sensitivity of rock dynamic characteristics to the strain rate and restraint of circumferential stress decrease,causing instability of surrounding rocks under axial stress condition.The second one lies at 1500-1800 m,where the wave impedance and dynamic strength of deep surrounding rocks drop sharply,and the dissipation energy presents a negative value.It suggests that the dynamic instability of deep surrounding rocks can be divided into dynamic load dominant and dynamic load induced types,depending on the second critical depth.
基金supported by the National Natural Science Foundation of China(Nos.52125402 and 52174084)the Natural Science Foundation of Sichuan Province of China(No.2022NSFSC0005).
文摘The deep earth,deep sea,and deep space are the main parts of the national“three deep”strategy,which is in the forefront of the strategic deployment clearly defined in China’s 14th Five-Year Plan(2021-2025)and the Long-Range Objectives Through the Year 2035.It is important to reveal the evolutionary process and mechanism of deep tectonics to understand the earth’s past,present and future.The academic con-notation of Geology in Time has been given for the first time,which refers to the multi-field evolution response process of geological bodies at different time and spatial scales caused by geological processes inside and outside the Earth.Based on the deep in situ detection space and the unique geological envi-ronment of China Jinping Underground Laboratory,the scientific issue of the correlation mechanism and law between deep internal time-varying and shallow geological response is given attention.Innovative research and frontier exploration on deep underground in situ geo-information detection experiments for Geology in Time are designed to be carried out,which will have the potential to explore the driving force of Geology in Time,reveal essential laws of deep earth science,and explore innovative technologies in deep underground engineering.
基金the valuable support from Yalong River Hydropower Development Company,Ltd.HydroChina Chengdu Engineering Corporation,Ltdthe National Natural Science Foundation of China(Grant Nos.51179014,51579016,51379022,and 51539002)
文摘Based on the analyses of data obtained from the underground powerhouse at Jinping I hydropower station, a comprehensive review of engineering rock mechanics practice in the underground powerhouse is first conducted. The distribution of strata, lithology, and initial geo-stress, the excavation process and corresponding rock mass support measures, the deformation and failure characteristics of the surrounding rock mass, the stress characteristics of anchorage structures in the cavern complex, and numerical simulations of surrounding rock mass stability and anchor support performance are presented. The results indicate that the underground powerhouse of Jinping I hydropower station is characterized by high to extremely high geo-stresses during rock excavation. Excessive surrounding rock mass deformation and high stress of anchorage structures, surrounding rock mass unloading damage, and local cracking failure of surrounding rock masses, etc., are mainly caused by rock mass excavation. Deformations of surrounding rock masses and stresses in anchorage structures here are larger than those found elsewhere: 20% of extensometers in the main powerhouse record more than 50 mm with the maximum at around 250 mm observed in the downstream sidewall of the transformer hall. There are about 25% of the anchor bolts having recorded stresses of more than 200 MPa. Jinping I hydropower plant is the first to have an underground powerhouse construction conducted in host rocks under extremely high geo-stress conditions, with the ratio of rock mass strength to geo-stress of less than 2.0. The results can provide a reference to underground powerhouse construction in similar geological conditions.
基金supported by the National Key Technology Support Program(Grant No.2013BAB05B05)
文摘To study the stress, deformation, and seepage pressure during the initial impoundment of the Jinping-I Arch Dam, monitoring analysis and numerical calculation were used in a dam behavior analysis that focused on the working behavior of the dam during the late period of the initial impoundment up to the end of November 2014. The numerical calculation was performed based on feedback analysis of the deformation and stress of the arch dam through inversion of the elastic moduli(E) of the dam body and foundation, using a three-dimensional finite element model for the linear elastic material of the arch dam. The main monitoring indices presented insignificant changes in the late period of the initial impoundment, and the results of feedback analysis were consistent with monitoring results. Analysis results also show that the deformations of the dam body and dam foundation were within the design range; the dam stress distributions were normal, with values lower than the design control criteria; and the seepage flows through the dam body and dam foundation were lower than the design drainage capacity of the deep-well pump house, demonstrating that the Jinping-I Arch Dam was in good working condition, and the initial impoundment had been successfully completed. The results of the working behavior analysis of the Jinping-I hydropower project during the initial impoundment can provide references for safe operation of similar projects.
基金Projects(U1965205,51779251,41672314)supported by the National Natural Science Foundation of China。
文摘The core-disk phenomenon has been observed generally in the drilling process under high-stress conditions.This paper presents the in-situ experimental study of the coring-disking failure mechanism of marble in an underground cavens with 2400 m depth.Based on the disk samples in several boreholes with different diameters,both macro-and micro-morphological characteristics of core-disks’break surface were analysis,using 3D optical scanning and electron microscope scanning.Moreover,the numerical back analysis was also used to simulate the drilling process for demonstrating the development of core disking.The in-situ experiment results showed that the failure types of core disking consisted of tensile break and shear break,i.e.,the shear break usually appears in the edge part of break surface,and tensile break appears in the central part.What’s more,the ration of core-disks thickness to borehole diameter is in a relatively stable range.Numerical back analysis indicated this micro asynchronous break of hard marble is induced by high geostress and unloading drill.
基金Project(51321065)supported by the Innovative Research Groups of the National Natural Science Foundation of ChinaProject(2013CB035904)supported by the National Basic Research Program of China(973 Program)Project(51439005)supported by the National Natural Science Foundation of China
文摘Accurate 3-D fracture network model for rock mass in dam foundation is of vital importance for stability,grouting and seepage analysis of dam foundation.With the aim of reducing deviation between fracture network model and measured data,a 3-D fracture network dynamic modeling method based on error analysis was proposed.Firstly,errors of four fracture volume density estimation methods(proposed by ODA,KULATILAKE,MAULDON,and SONG)and that of four fracture size estimation methods(proposed by EINSTEIN,SONG and TONON)were respectively compared,and the optimal methods were determined.Additionally,error index representing the deviation between fracture network model and measured data was established with integrated use of fractal dimension and relative absolute error(RAE).On this basis,the downhill simplex method was used to build the dynamic modeling method,which takes the minimum of error index as objective function and dynamically adjusts the fracture density and size parameters to correct the error index.Finally,the 3-D fracture network model could be obtained which meets the requirements.The proposed method was applied for 3-D fractures simulation in Miao Wei hydropower project in China for feasibility verification and the error index reduced from 2.618 to 0.337.
基金the funding of the Autonomous Research Topic of the State Key Laboratory of Frozen Soil Engineering,Chinese Academy of Sciences (Nos.Y951061401)the Science and Technology Project of Yalong River Hydropower Development Company (YLLHK-LHA-2019006)the National Natural Science Foundation of China (NSFC) (Grant number 41771066)。
文摘The uniform settle caused by the permafrost creep is still the primary problem of engineering construction in cold region.To investigate the creep characteristics of frozen soils mixed with silty clay and coarse-grained sand,several triaxial creep tests of frozen mixed soils under different conditions(temperature,confining pressure,coarse-grained particle content) were performed,and the effects of the temperature,confining pressure and coarse particle content on the creep characteristics of frozen mixed soils were also analyzed.The results of the experiments indicated that when the confining pressure was low,the specimen exhibited an attenuation creep under a low-stress level(0.4-0.7) and a non-attenuation creep under a high-stress level(0.7-0.9).In contrast,when the confining pressure was high,the specimen had both initial and stable creep stages,but no the accelerated creep stage.The higher the content of coarse grains,the shorter the stable creep stage,and the easier to enter the accelerated creep stage for the specimen.Further,the long-term strength of frozen soils decreased with an increase in the content of coarse grains.Finally,a newly improved Nishihara model was proposed to consider both the hardening effect and damage effect by introducing both the hardening and damage variables,which can model the entire creep process of frozen soils modeled relatively easily.It was found that with the increasing content of coarse particle,both the strengthening and damaged effects in the creep process are reduced。
基金supported by National Natural Science Funds of China(Nos.41771066,41825015)the Science and Technology Project of Yalong River Hydropower Development Company(No.LHKA-G201906)。
文摘The construction of water conservancy projects in cold regions experiences freezing-thawing cycles,which can greatly change the engineering properties of soil and have a significant impact on the construction of projects.Lianghekou Hydropower Station(LHS),is a controlling station with the largest installed capacity among the 7 middle reach projects in the Yalong River,the secondary tributary of the Yangtze River.LHS is located in a seasonally frozen soil area.Based on the measured data of air and ground temperature in winter in the dam core wall,the freezing-thawing variation of gravelly soil and contact clay during the filling process of the core wall are compared and analyzed,then the main impact factors of the freezing-thawing variation of soils are discussed.The results show that under the influence of air temperature,soil freezes unidirectionally from ground surface downward and deepens gradually,and the thawing processes are different at the aspects of thawing direction and rate.Air temperature and physical properties of soil including soil type,moisture content and dry density affect the freezingthawing processes of soils.And the impact of engineering construction is more remarkable than natural factors.The engineering construction affects soil temperature and freezing-thawing process by controlling the initial temperature of soil,the speed and duration of the technological conversion of paving,compaction,and the length of placed duration at night.Due to the long placed duration of soil with the slow construction method,the initial temperature of soil gradually reduces,the heat transfer process inside soil is fast.Then the internal heat of soil releases,the decreasing rate of ground temperature of soil at different depths is fast and the frozen depth deepens.While due to the short placed duration of soil with the rapid construction process,the initial temperature of soil is high,high internal heat of soil is supplied every day,and the heat transfer process inside soil is slow.Then the decreasing rate of temperature of soil at different depths is slow,and the variation amplitude of frozen depth is small.This study provides useful guidance for the freezingthawing prevention during the construction process of core wall dams located at high altitude region in winter.
基金the Ministry of Science and Technology of China(No.2016YFA0400302)the National Natural Sciences Foundation of China(Nos.11775142 and U1965201)the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP).
文摘In experiments searching for rare signals,background events from the detector itself are some of the major factors limiting search sensitivity.Screening for ultra-low radioactive detector materials is becoming ever more essential.We propose to develop a gaseous time projection chamber(TPC)with a Micromegas readout for radio screening.The TPC records three-dimensional trajectories of charged particles emitted from a flat sample placed in the active volume of the detector.The detector can distinguish the origin of an event and identify the particle types with information from trajectories,which significantly increases the screening sensitivity.For a particles from the sample surface,we observe that our proposed detector can reach a sensitivity higher than 100 l Bq m-2 within two days.
文摘In our published letter,[1]we have identified a minor error in Figs.2 and 3.Instead,we have 2111 events in these two plots with 646,249,382,and 834 events in Run 9(20.0 ton·day),Run 10(19.4 ton·day),Run 11–1(24.2 ton·day),and Run 11–2(37.1 ton·day).The mistake is due to an incorrect application of a small energy non-linearity(known as the BLS non-linearity)in making plots,but has no impact to the final results.Figures 2 and 3 are now updated in this note.
基金supported by the National Natural Science Foundation of China(Grant No.41801039,42071095,41771066)the Second Tibetan Plateau ReferencesScientific Expedition and Research(STEP)program(Grant No.2019QZKK0905)+1 种基金the Science and Technology Project of Gansu Province(Grant No.21JR7RA052)the Science and Technology Project of Yalong River Hydropower Development Company(LHKA-G201906)。
文摘When filling embankment dams in cold regions,engineers must solve two freeze–thaw cycle(FTC)-induced soil problems.First,compacted soil constituting the dam is subjected to the FTC during dam construction.Second,loose soil material(LSM),which is subjected to the FTC,fills the dam.To investigate the effects of the aforementioned two problems on the hydraulic conductivity of compacted clayey soil,a series of permeation tests on clayey soil compacted before and after FTC were conducted in this study.The results showed that for the first problem,the hydraulic conductivity of compacted clayey soil subjected to one FTC significantly increases by two to three orders of magnitude because FTC-induced cracks can cause preferential flow in the permeation process.For the second problem,when the FTC number is less than a critical number,the FTC of the LSM may result in the development of united soil particles,thereby increasing the effective porosity ratio and hydraulic conductivity of the compacted soil.It was discovered that the hydraulic conductivity of compacted soil can increase by one to three times when the LSM is subjected to 10 FTCs.When the FTC number exceeds a critical number,the effective porosity ratio and hydraulic conductivity of the compacted soil may decrease with the FTC of the LSM.This should be investigated in future studies,and the results can be used to improve engineering management processes when filling embankment dams during winter in cold regions.
基金This work was supported by the National Program on Global Change and Air-Sea Interaction(grant No.GASI-GEOGE-05-02)the National Natural Science Foundation of China(grant Nos.91955204,42074047 and 92058210)+1 种基金the second Tibetan Plateau Scientific Expedition and Research Program(grant No.2019QZKK2704)Opening Fund of Geomathematics Key Laboratory of Sichuan Province(grant No.scsxdz2020yb03).
文摘To investigate the tidal effects on intra-continental earthquake initiation in the Tibetan Plateau and its surrounding areas,we selected over 1,500 focal mechanism solutions of inland earthquakes(epicenter locates at least 100 km to the coastlines)from Global Centroid Moment Tensor(GCMT)project and analyzed the values of tidal normal and shear stress as well as tidal Coulomb failure stress.For Coulomb failure stress calculation,we used Coulomb 3.40 software.We find that:(1)p-values of tidal stress change suggests a high tidal correlation of earthquake imitations with tidal normal stress change;(2)when tidal normal stress reached the local maximum values of compression and when tidal shear stress were closed to the positive peaks,earthquakes generated more frequently;(3)particular seismogenic environments such as strong continental plate interactions and the existence of fluids or rheologic substance possibly raise the tidal correlations and(4)higher sensitivity of earthquake initiation to earth tide presents along with higher seismicity,suggesting the rate of rain energy accumulation somehow has a dominating effect on the tidal correlation of earthquake initiation.
基金Supported in part by the National Key R&D Program of China(Grant No.2016YFA0400301)the National Natural Science Foundation of China(Grant Nos.11525522,11775141,and 11755001)+5 种基金the Double First Class Plan of the Shanghai Jiao Tong University,the China Postdoctoral Science Foundation(Grant No.2018M640036)the Office of Science and Technology,Shanghai Municipal Government(Grant Nos.11DZ2260700,16DZ2260200,and 18JC1410200)the Key Laboratory for Particle Physics,Astrophysics and Cosmology,Ministry of Education,for important supportsponsorship from the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP)the Hongwen Foundation in Hong Kongthe Tencent Foundation in China。
文摘We report a search for new physics signals using the low energy electron recoil events in the complete data set from PandaX-Ⅱ,in light of the recent event excess reported by XENON1 T.The data correspond to a total exposure of 100.7 ton·day with liquid xenon.With robust estimates of the dominant background spectra,we perform sensitive searches on solar axions and neutrinos with enhanced magnetic moment.It is found that the axionelectron coupling gAe<4.6×10^(-12) for an axion mass less than 0.1 keV/c^(2) and the neutrino magnetic moment μv<4.9×10^(-11)μB at 90%confidence level.The observed excess from XENON1 T is within our experimental constraints.
基金supported by the National Key Research and Development Program of China(Grant Nos.2023YFA1607100,and 2022YFA1605000)the National Natural Science Foundation of China(Grant Nos.12322511,12175112,12005111,and 11725522)。
文摘Dark matter(DM)is a major constituent of the Universe.However,no definite evidence of DM particles(denoted as“χ”)has been found in DM direct detection(DD)experiments to date.There is a novel concept of detectingχfrom evaporating primordial black holes(PBHs).We search forχemitted from PBHs by investigating their interaction with target electrons.The examined PBH masses range from 1×10^(15)to 7×10^(16)g under the current limits of PBH abundance fPBH.Using 205.4 kg·day data obtained from the CDEX-10 experiment conducted in the China Jinping Underground Laboratory,we exclude theχ-electron(χ-e)elastic-scattering cross sectionσ_(χe)~5×10^(-29)cm^(2)forχwith a mass■keV from our results.With the higher radiation background but lower energy threshold(160 eV),CDEX-10 fills a part of the gap in the previous work.If(m_(χ),σ_(χe))can be determined in the future,DD experiments are expected to impose strong constraints on fPBHfor large MPBHs.
基金Supported by the National Key Research and Development Program of China(2017YFA0402201,2022YFA1604701,2022YFA1605000)the National Natural Science Foundation of China(12322511,12175112,12005111,11725522)。
文摘We operated a p-type point contact high purity germanium(PPCGe)detector(CDEX-1B,1.008 kg)in the China Jinping Underground Laboratory(CJPL)for 500.3 days to search for neutrinoless double beta(0νββ)decay of^(76)Ge.A total of 504.3 kg⋅day effective exposure data was accumulated.The anti-coincidence and the multi/single-site event(MSE/SSE)discrimination methods were used to suppress the background in the energy region of interest(ROI,1989–2089 keV for this work)with a factor of 23.A background level of 0.33 counts/(keV⋅kg⋅yr)was realized.The lower limit on the half life of^(76)Ge 0νββdecay was constrained as T_(1/2)^(0ν)>1.0×10^(23)yr(90%C.L.),corresponding to the upper limits on the effective Majorana neutrino mass:<mββ><3.2–7.5 eV.
基金the National Natural Science Foundation of China(12090060,12090063,12105052,12005131,11905128,11925502)the Office of Science and Technology,Shanghai Municipal Government,China(22JC1410100)。
文摘Neutrinos from core-collapse supernovae are essential for understanding neutrino physics and stellar evolution.Dual-phase xenon dark matter detectors can be used to track explosions of galactic supernovae by detecting neutrinos through coherent elastic neutrino-nucleus scatterings.In this study,a variation of progenitor masses and explosion models are assumed to predict neutrino fluxes and spectra,which result in the number of expected neutrino events ranging from 6.6 to 13.7 at a distance of 10 kpc over a 10-s duration with negligible backgrounds at PandaX-4T.Two specialized triggering alarms for monitoring supernova burst neutrinos are built.The efficiency of detecting supernova explosions at various distances in the Milky Way is estimated.These alarms will be implemented in the real-time supernova monitoring system at PandaX-4T in the near future,which will provide supernova early warnings for the astronomical community.
基金supported in part by the National Science Foundation of China(12090060,12090061)Ministry of Science and Technology of China(2023YFA1606200)+1 种基金Office of Science and Technology,Shanghai Municipal Government(22JC1410100)the Double First Class Plan of the Shanghai Jiao Tong University and Guangzhou Municipal Science and Technology Project(202201010991)。
文摘Signal reconstruction through software processing is a crucial component of the background and signal models in the PandaX-4T experiment,which is a multi-tonne dark matter direct search experiment.The accuracy of signal reconstruction is influenced by various detector artifacts,including noise,dark count of photomultiplier,photoionization of impurities in the detector,and other relevant considerations.In this study,we presented a detailed description of a semi-data-driven approach designed to simulate a signal waveform.This work provides a reliable model for the efficiency and bias of the signal reconstruction in the data analysis of PandaX-4T.By comparing critical variables that relate to the temporal shape and hit pattern of the signals,we found good agreement between the simulation and data.
基金supported in part by the grants from the National Science Foundation of China(12090060,12090063,12105052,12005131,11905128,11925502)the Office of Science and Technology,Shanghai Municipal Government(22JC1410100)+6 种基金the National Science Foundation of Sichuan ProvinceChina(2024NSFSC1371)the support from the Double First Class Plan of Shanghai Jiao Tong Universitythe sponsorship from the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP)Hongwen Foundation in Hong KongTencentNew Cornerstone Science Foundation in China。
文摘The proton-proton(pp)fusion chain dominates the neutrino production in the Sun.The uncertainty of the predicted pp neutrino flux is at the sub-percent level,whereas that of the best measurement is O(10%).In this study,for the first time,we measure solar pp neutrinos in the electron recoil energy range from 24 to 144 keV using the PandaX-4T commissioning data with 0.63 tonne×year exposure.The pp neutrino flux is determined as(8.0±3.9(stat)±10.0(syst))×1010 s^(-1)cm^(-2),which is consistent with the Standard Solar Model and existing measurements,corresponding to an upper flux limit of 23.3×10^(10)s^(-1)cm^(-2)at 90%C.L..
基金The authors thank the Fish Reproduction Station of Jinping-Guandi,China for providing the place for dissecting experiments.This study was supported by grants from the Yalong River Hydropower Development Company,Ltd.(No.YLDC-ZBA-2018116)the National Natural Science Foundation of China(No.31900373).We thank Megan Price for her help with language editing.
文摘Fish artificial breeding and release is an important method to restore wild populations of endemic fish species around the world.Schizothorax wangchiachii(SW)is an endemic fish in the upper Yangtze River and is one of the most important species for the artificial breeding and release program implemented in the Yalong River drainage system in China.It is unclear how artificially bred SW adapts to the changeable wild environment post-release,after being in a controlled and very different artificial environment.Thus,the gut samples were collected and analyzed for food composition and microbial 16S rRNA in artificially bred SW juveniles at day 0(before release),5,10,15,20,25,and 30 after release to the lower reaches of the Yalong River.The results indicated that SW began to ingest periphytic algae from the natural habitat before day 5,and this feeding habit is gradually stabilized at day 15.Prior to release,Fusobacteria are the dominant bacteria in the gut microbiota of SW,while Proteobacteria and Cyanobacteria generally are the dominant bacteria after release.The results of microbial assembly mechanisms illustrated that deterministic processes played a more prominent role than stochastic processes in the gut microbial community of artificially bred SW juveniles after releasing into the wild.Overall,the present study integrates the macroscopic and microscopic methods to provide an insight into the food and gut microbial reorganization in the released SW.This study will be an important research direction to explore the ecological adaptability of artificially bred fish after releasing into the wild.
基金supported by the grant from the Ministry of Science and Technology of China(No.2016YFA0400302)the grant U1965201 from the National Natural Sciences Foundation of ChinaWe appreciate the support from the Chinese Academy of Sciences Center for Excellence in Particle Physics(CCEPP).
文摘Purpose Low-radioactive material screening is becoming essential for rare event search experiments,such as neutrinoless double beta decay and dark matter searches in underground laboratories.A gaseous time projection chamber(TPC)can be used for such purposes with large active areas and high efficiency.Methods A gaseous TPC with a Micromegas readout plane of approximately 20×20 cm^(2)is successfully constructed for surface alpha contamination measurements.Results We have characterized the energy resolution,gain stability,and tracking capability with calibration sources.Conclusion With the unique track-related background suppression cuts of the gaseous TPC,we have established that the alpha background rate of the TPC is(0.13±0.03)×10^(−6)Bq/cm^(2),comparable to the leading commercial solutions.