A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion...A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.展开更多
A novel nanofiber composite poly(N-isopropylacrylamide)(PNIPAAm)/polyvinyl pyrrolidone(PVP)was successfully prepared by electrospinning.Analogous medicated fibers loaded with ketoprofen(KET)as a model drug were prepar...A novel nanofiber composite poly(N-isopropylacrylamide)(PNIPAAm)/polyvinyl pyrrolidone(PVP)was successfully prepared by electrospinning.Analogous medicated fibers loaded with ketoprofen(KET)as a model drug were prepared.X-ray diffraction(XRD)demonstrated that the drug was presented in the fibers with an amorphous form.Both scanning and transmission electron microscopy showed that the fibers had an even diameter and smooth surface,and no phase separation was observed.The KET loaded nanofibers did not affect the morphology of the fibers,and no drug aggregation was separated from the polymer fibers.Water contact angle measurements proved that the PNIPAAm/PVP fibers switched from hydrophilic to hydrophobic when the temperature increased the lower critical solution temperature of 32℃.In vitro drug release studies were also undertaken and the result indicated that the PNIPAAm/PVP blend nanofiber presented the properties of the two polymers,having temperature-sensitive systems with sustained release properties.In addition,MTT assay demonstrated that the nanofiber film was non-toxic and suitable for cell growth.Thus,the nanofiber can be used as thermoresponsive carriers for sustained release of poor water soluble drugs.展开更多
The new urbanization provides opportunities for the ecological protection of traditional regional culture. In the context of the integrated development of agriculture, tourism, and cultural industries, this paper inte...The new urbanization provides opportunities for the ecological protection of traditional regional culture. In the context of the integrated development of agriculture, tourism, and cultural industries, this paper integrates the thinking of "immersive theatre" and adopts the design method of multithread dramatic narrative mode to create a number of interactive flow lines in the architecture and focus on the sensory experiences of environment, enabling the traditional regional culture to really touch the audience.展开更多
In order to enhance the efficiency and specificity of anticancer drug delivery and realize intelligently controlled release,a new multi-functional nanoparticle drug carrier was synthesized.The drug carrier was prepare...In order to enhance the efficiency and specificity of anticancer drug delivery and realize intelligently controlled release,a new multi-functional nanoparticle drug carrier was synthesized.The drug carrier was prepared by functionalizing multi-walled carbon nanotubes(MWCNTs) with polyethylenimines(PEI),fluorescein isothiocyanate(FITC) and glycyrrhizic acid(GL).After detailed characterization,doxorubicin(DOX) was loaded onto the obtained MWCNT composites through π-π stacking interactions.The drug loading capacity of the GL-functionalized material was up to 92%,and the release behavior was significantly pH-sensitive.Release at pH = 5.8(typical of the tumor cell microenvironment) was much more rapid and reached a greater extent than release under normal physiological conditions(pH = 7.4).The modified MWCNTs had high biocompatibility with the liver cancer cell line SMMC-7721,but were able to induce cell death after 24 h incubation if loaded with DOX.Tests with shorter incubation time(2 h) were undertaken to investigate the selectivity of the MWCNT composites,showed that the nanocomposites could specifically target cancer cells.The above results suggest that the functionalized carbon nanotubes-based material has potential applications for targeted delivery and controlled release of anticancer drug.展开更多
The increasing demand of water in the country highlights the need to introduce low-input and water saving technologies for agricultural sustainability and crop production,mainly in semi-arid region.A study was conduct...The increasing demand of water in the country highlights the need to introduce low-input and water saving technologies for agricultural sustainability and crop production,mainly in semi-arid region.A study was conducted to minimize deep percolation losses from the furrow bottom under two different irrigation treatments viz.(1)furrow bottom with plastic sheet(T1)and(2)furrow bottom without plastic Sheet(T0).The physical and chemical analyses of soil profile were taken at a depth of 0-80 cm before and after crop harvesting.The dry density of soil slightly increased(0.01 g/cm^(3))under both treatments,while soil pH decreased under T1.The average yield was 8332 kg/hm^(2) and 7575 kg/hm^(2),with 21.56 m^(3) and 31.09 m^(3) total volume of irrigation water applied under T1and T0,respectively.The saving percentages of water under treatments were 52.22% and 31.00% under T1 and T0 respectively as compared to the saving of water under traditional irrigation practice.Overall,better performance,in terms of crop production and water saving,was obtained with use of plastic sheet integrated with bottom of furrows.Hence,it is suggested that the furrow irrigation method with plastic sheet may be used to preventing moisture and minimize deep percolation losses from furrow bottom.展开更多
The properties of LSO-SDC composite electrolytes prepared by the mixed powder with different LSO/SDC mass ratios were studied. The apatite-type lanthanum silicates La10Si6O27(LSO) and Sm0.2Ce0.8O1.9(SDC) were synt...The properties of LSO-SDC composite electrolytes prepared by the mixed powder with different LSO/SDC mass ratios were studied. The apatite-type lanthanum silicates La10Si6O27(LSO) and Sm0.2Ce0.8O1.9(SDC) were synthesized via sol-gel process and glycine-nitrate process(GNP), respectively. The phase structure, microstructure, relative density, thermal expansion properties and oxygen ion conductivity of the samples were investigated by means of techniques such as X-ray diffraction(XRD), scanning electron microscopy(SEM), Archimedes method, dilatometer, and AC impedance spectroscopy. The results showed that SDC addition to the samples could enhance the density of the samples. However, the LSO-SDC composite electrolyte sintered at 1550 oC was over sintering when the SDC content was 50 wt.%. At the lower content of SDC(0–10 wt.%), the decrease of conductivity was predominantly attributed to the reducing concentration of carriers. However, the conductivities of the composite electrolytes increased with the increasing SDC content(10 wt.%–40 wt.%) because of the enhanced percolation of highly conductive SDC component in the microstructure of composite electrolytes. In addition,the dependence of conductivity on p(O2) showed that LSO-SDC composite electrolytes were stable in the examined range of p(O2).展开更多
Hydroxyl anion conducting membrane composed of poly(vinyl alcohol)(PVA),poly(diallyldimethylammonium chloride)(PDDA),and hydroxylated multiwalled carbon nanotubes(MWCNTs-OH)have been synthesized via a facile blending-...Hydroxyl anion conducting membrane composed of poly(vinyl alcohol)(PVA),poly(diallyldimethylammonium chloride)(PDDA),and hydroxylated multiwalled carbon nanotubes(MWCNTs-OH)have been synthesized via a facile blending-casting method assisted by a hot-chemical cross-linking process.Fourier-transform infrared spectroscopy(FTIR)and scanning electron microscopy(SEM)showed that PDDA and MWCNTs-OH were successfully introduced into the PVA matrix and MWCNTs-OH could effectively improve the network structure of the membrane.With the addition of MWCNTs-OH,many properties of the membranes such as thermal,chemical,mechanical stability and swelling property were improved significantly.Most prominent is the improvement of mechanical property,where the PVA/PDDA/MWCNTs-OH(1:0.5/3 wt.%)membrane showed high tensile strength of 40.3 MPa,tensile elongation of 12.3%and high Young's modulus of 782.8 MPa.Moreover,MWCNTs-OH bound the polymer chains in the membranes more compactly,resulting in decreased water uptake.By tuning the mass fraction of PVA,PDDA,and MWCNTs-OH in the membrane,the maximum OH-conductivity(0.030 S cm^(-1)at room temperature)was achieved for the composition of 0.5 wt.%MWCNTs-OH doped with the PVA:PDDA(1:0.5 by mass)blend.The membranes showed excellent oxidative stability when treated with both a solution of H_(2)O_(2)(30 wt.%)at room temperature and in a hot KOH solution(8 M)at 80℃.Based on the full aliphatic structure membrane(PVA/PDDA-OH/1 wt.%MWCNTs-OH),membrane electrode assemblies(MEAs)fabricated with Pt/C cathode catalyst can achieve power densities of 41.3 mW cm^(-2)and 66.4 mW cm^(-2)in a H_(2)/O_(2)system at room temperature and 40℃,respectively.Using CoPc as the Pt-free cathode catalyst,power densities of 9.1 mW cm^(-2)and 14.0 mW cm^(-2)at room temperature and 40℃ were obtained,respectively.展开更多
基金sponsored by the National Natural Science Foundation of China(grant no.51278229)the Six Talent Peak Project of Jiangsu Province(grant no.JNHB-018)
文摘A vortex electrostatic precipitator (VEP) forms a vortex flow field within a precipitator by means of the vertical staggered layout of the double-vortex collecting plate facing the direction of the gas flow. The ion concentrations within the precipitator can be significantly increased. Correspondingly, the charging and coagulation rates of fine particles and particle migration velocity are significantly improved within the VEP. Since it can effectively collect fine particles and reduce precipitator size, VEPs represent a new type of electrostatic precipitator with great application potential. In this work the change curve of the external voltage, gas velocity, row spacing and effective collecting area influencing the precipitation efficiency were acquired through a single-factor experiment. Using an orthogonal regression design, attempts were made to analyze the major operating parameters influencing the collecting efficiency of fine particles, establish a multiple linear regression model and analyze the weights of factors and then acquire quantitative rules relating experimental indicators and factors. The regression model was optimized by MATLAB programming, and we then obtained the optimal factor combination which can enhance the efficiency of fine particle collection. The final optimized result is that: when gas velocity is 3.4 m s-1, the external voltage is 18 kV, row spacing is 100 mm and the effective collecting area is 1.13 m2, the rate of fine particle collection is 89.8867%. After determining and analyzing the state of the internal flow field within the VEP by particle image velocimetry (PIV), the results show that, for a particular gas velocity, a vortex zone and laminar zone are distinctly formed within the VEP, which increases the ion transport ratio as well as the charging, coagulation and collection rates of fine particles within the precipitator, thus making further improvements in the efficiency of fine particle collection.
基金Science and Technology Commission of Shanghai Municipality,China(No.16410723700)"111 Project"Biomedical Textile Materials Science and Technology,China(No.B07024)UK-China Joint Laboratory for Therapeutic Textiles Based at Donghua University
文摘A novel nanofiber composite poly(N-isopropylacrylamide)(PNIPAAm)/polyvinyl pyrrolidone(PVP)was successfully prepared by electrospinning.Analogous medicated fibers loaded with ketoprofen(KET)as a model drug were prepared.X-ray diffraction(XRD)demonstrated that the drug was presented in the fibers with an amorphous form.Both scanning and transmission electron microscopy showed that the fibers had an even diameter and smooth surface,and no phase separation was observed.The KET loaded nanofibers did not affect the morphology of the fibers,and no drug aggregation was separated from the polymer fibers.Water contact angle measurements proved that the PNIPAAm/PVP fibers switched from hydrophilic to hydrophobic when the temperature increased the lower critical solution temperature of 32℃.In vitro drug release studies were also undertaken and the result indicated that the PNIPAAm/PVP blend nanofiber presented the properties of the two polymers,having temperature-sensitive systems with sustained release properties.In addition,MTT assay demonstrated that the nanofiber film was non-toxic and suitable for cell growth.Thus,the nanofiber can be used as thermoresponsive carriers for sustained release of poor water soluble drugs.
基金Sponsored by Science and Technology Program of the Ministry of Housing and Urban-Rural Development(2016-K1-035)Science and Technology Program of Jiangsu Provincial Department of Housing and Urban-Rural Development(2016ZD43,2016ZD55)Innovative Training Program for Jiangsu Provincial College Students(ycgy2017006)
文摘The new urbanization provides opportunities for the ecological protection of traditional regional culture. In the context of the integrated development of agriculture, tourism, and cultural industries, this paper integrates the thinking of "immersive theatre" and adopts the design method of multithread dramatic narrative mode to create a number of interactive flow lines in the architecture and focus on the sensory experiences of environment, enabling the traditional regional culture to really touch the audience.
基金Science and Technology Commission of Shanghai Municipality,China(No.16410723700)"111 Project" Biomedical Textile Materials Science and Technology,China(No.B07024)the UK-China Joint Laboratory for Therapeutic Textiles
文摘In order to enhance the efficiency and specificity of anticancer drug delivery and realize intelligently controlled release,a new multi-functional nanoparticle drug carrier was synthesized.The drug carrier was prepared by functionalizing multi-walled carbon nanotubes(MWCNTs) with polyethylenimines(PEI),fluorescein isothiocyanate(FITC) and glycyrrhizic acid(GL).After detailed characterization,doxorubicin(DOX) was loaded onto the obtained MWCNT composites through π-π stacking interactions.The drug loading capacity of the GL-functionalized material was up to 92%,and the release behavior was significantly pH-sensitive.Release at pH = 5.8(typical of the tumor cell microenvironment) was much more rapid and reached a greater extent than release under normal physiological conditions(pH = 7.4).The modified MWCNTs had high biocompatibility with the liver cancer cell line SMMC-7721,but were able to induce cell death after 24 h incubation if loaded with DOX.Tests with shorter incubation time(2 h) were undertaken to investigate the selectivity of the MWCNT composites,showed that the nanocomposites could specifically target cancer cells.The above results suggest that the functionalized carbon nanotubes-based material has potential applications for targeted delivery and controlled release of anticancer drug.
基金Authors wish to thank the National Natural Science Foundation of China(Grant No.51275250)for supporting.
文摘The increasing demand of water in the country highlights the need to introduce low-input and water saving technologies for agricultural sustainability and crop production,mainly in semi-arid region.A study was conducted to minimize deep percolation losses from the furrow bottom under two different irrigation treatments viz.(1)furrow bottom with plastic sheet(T1)and(2)furrow bottom without plastic Sheet(T0).The physical and chemical analyses of soil profile were taken at a depth of 0-80 cm before and after crop harvesting.The dry density of soil slightly increased(0.01 g/cm^(3))under both treatments,while soil pH decreased under T1.The average yield was 8332 kg/hm^(2) and 7575 kg/hm^(2),with 21.56 m^(3) and 31.09 m^(3) total volume of irrigation water applied under T1and T0,respectively.The saving percentages of water under treatments were 52.22% and 31.00% under T1 and T0 respectively as compared to the saving of water under traditional irrigation practice.Overall,better performance,in terms of crop production and water saving,was obtained with use of plastic sheet integrated with bottom of furrows.Hence,it is suggested that the furrow irrigation method with plastic sheet may be used to preventing moisture and minimize deep percolation losses from furrow bottom.
基金Project supported by Natural Science Foundation for the Youth of China(51202211)Natural Science Foundation of Jiangsu Province(BK20140473)
文摘The properties of LSO-SDC composite electrolytes prepared by the mixed powder with different LSO/SDC mass ratios were studied. The apatite-type lanthanum silicates La10Si6O27(LSO) and Sm0.2Ce0.8O1.9(SDC) were synthesized via sol-gel process and glycine-nitrate process(GNP), respectively. The phase structure, microstructure, relative density, thermal expansion properties and oxygen ion conductivity of the samples were investigated by means of techniques such as X-ray diffraction(XRD), scanning electron microscopy(SEM), Archimedes method, dilatometer, and AC impedance spectroscopy. The results showed that SDC addition to the samples could enhance the density of the samples. However, the LSO-SDC composite electrolyte sintered at 1550 oC was over sintering when the SDC content was 50 wt.%. At the lower content of SDC(0–10 wt.%), the decrease of conductivity was predominantly attributed to the reducing concentration of carriers. However, the conductivities of the composite electrolytes increased with the increasing SDC content(10 wt.%–40 wt.%) because of the enhanced percolation of highly conductive SDC component in the microstructure of composite electrolytes. In addition,the dependence of conductivity on p(O2) showed that LSO-SDC composite electrolytes were stable in the examined range of p(O2).
基金This work was financially supported by Chinese National Natural Science Foundation(grant no.51803175)。
文摘Hydroxyl anion conducting membrane composed of poly(vinyl alcohol)(PVA),poly(diallyldimethylammonium chloride)(PDDA),and hydroxylated multiwalled carbon nanotubes(MWCNTs-OH)have been synthesized via a facile blending-casting method assisted by a hot-chemical cross-linking process.Fourier-transform infrared spectroscopy(FTIR)and scanning electron microscopy(SEM)showed that PDDA and MWCNTs-OH were successfully introduced into the PVA matrix and MWCNTs-OH could effectively improve the network structure of the membrane.With the addition of MWCNTs-OH,many properties of the membranes such as thermal,chemical,mechanical stability and swelling property were improved significantly.Most prominent is the improvement of mechanical property,where the PVA/PDDA/MWCNTs-OH(1:0.5/3 wt.%)membrane showed high tensile strength of 40.3 MPa,tensile elongation of 12.3%and high Young's modulus of 782.8 MPa.Moreover,MWCNTs-OH bound the polymer chains in the membranes more compactly,resulting in decreased water uptake.By tuning the mass fraction of PVA,PDDA,and MWCNTs-OH in the membrane,the maximum OH-conductivity(0.030 S cm^(-1)at room temperature)was achieved for the composition of 0.5 wt.%MWCNTs-OH doped with the PVA:PDDA(1:0.5 by mass)blend.The membranes showed excellent oxidative stability when treated with both a solution of H_(2)O_(2)(30 wt.%)at room temperature and in a hot KOH solution(8 M)at 80℃.Based on the full aliphatic structure membrane(PVA/PDDA-OH/1 wt.%MWCNTs-OH),membrane electrode assemblies(MEAs)fabricated with Pt/C cathode catalyst can achieve power densities of 41.3 mW cm^(-2)and 66.4 mW cm^(-2)in a H_(2)/O_(2)system at room temperature and 40℃,respectively.Using CoPc as the Pt-free cathode catalyst,power densities of 9.1 mW cm^(-2)and 14.0 mW cm^(-2)at room temperature and 40℃ were obtained,respectively.