Considerable attention has been recently paid to elucidation the linear,nonlinear and quantum physics of moire patterns because of the innate extraordinary physical properties and potential applications.Particularly,m...Considerable attention has been recently paid to elucidation the linear,nonlinear and quantum physics of moire patterns because of the innate extraordinary physical properties and potential applications.Particularly,moire superlattices consisted of two periodic structures with a twist angle offer a new platform for studying soliton theory and its practical applications in various physical systems including optics,while such studies were so far limited to reversible or conservative nonlinear systems.Herein,we provide insight into soliton physics in dissipative physical settings with moire optical lattices,using numerical simulations and theoretical analysis.We reveal linear localization-delocalization transitions,and find that such nonlinear settings support plentiful localized gap modes representing as dissipative gap solitons and vortices in periodic and aperiodic moire optical lattices,and identify numerically the stable regions of these localized modes.Our predicted dissipative localized modes provide insightful understanding of soliton physics in dissipative nonlinear systems since dissipation is everywhere.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(12074423,11925108,12301306)the Young Scholar of Chinese Academy of Sciences in western China(XAB2021YN18)+1 种基金the Provisional Science Fund for Distinguished Young Scholars of Shaanxi(2024JC-JCQN-11)the Beijing Natural Science Foundation(1234039).
文摘Considerable attention has been recently paid to elucidation the linear,nonlinear and quantum physics of moire patterns because of the innate extraordinary physical properties and potential applications.Particularly,moire superlattices consisted of two periodic structures with a twist angle offer a new platform for studying soliton theory and its practical applications in various physical systems including optics,while such studies were so far limited to reversible or conservative nonlinear systems.Herein,we provide insight into soliton physics in dissipative physical settings with moire optical lattices,using numerical simulations and theoretical analysis.We reveal linear localization-delocalization transitions,and find that such nonlinear settings support plentiful localized gap modes representing as dissipative gap solitons and vortices in periodic and aperiodic moire optical lattices,and identify numerically the stable regions of these localized modes.Our predicted dissipative localized modes provide insightful understanding of soliton physics in dissipative nonlinear systems since dissipation is everywhere.