Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the eve...Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.展开更多
This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structu...This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.展开更多
This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution.The geometries of the structures are represented by Catmull-Clark subdivision surfaces,which are able to build...This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution.The geometries of the structures are represented by Catmull-Clark subdivision surfaces,which are able to build gap-free Computer-Aided Design models and meanwhile tackle the extraordinary points that are commonly encountered in geometricmodelling.The acoustic fields are simulated using the isogeometric boundary elementmethod,and a density-based topology optimization is conducted to optimize distribution of sound-absorbing materials adhered to structural surfaces.The approach enables one to perform acoustic optimization from Computer-Aided Design models directly without needingmeshing and volume parameterization,thereby avoiding the geometric errors and time-consuming preprocessing steps in conventional simulation and optimization methods.The effectiveness of the present method is demonstrated by three dimensional numerical examples.展开更多
文摘Over the last couple of decades,community question-answering sites(CQAs)have been a topic of much academic interest.Scholars have often leveraged traditional machine learning(ML)and deep learning(DL)to explore the ever-growing volume of content that CQAs engender.To clarify the current state of the CQA literature that has used ML and DL,this paper reports a systematic literature review.The goal is to summarise and synthesise the major themes of CQA research related to(i)questions,(ii)answers and(iii)users.The final review included 133 articles.Dominant research themes include question quality,answer quality,and expert identification.In terms of dataset,some of the most widely studied platforms include Yahoo!Answers,Stack Exchange and Stack Overflow.The scope of most articles was confined to just one platform with few cross-platform investigations.Articles with ML outnumber those with DL.Nonetheless,the use of DL in CQA research is on an upward trajectory.A number of research directions are proposed.
基金funded by National Natural Science Foundation of China(NSFC)under Grant Nos.11702238,51904202,and 11902212Nanhu Scholars Program for Young Scholars of XYNU.
文摘This paper presents an isogeometric boundary element method(IGABEM)for transient heat conduction analysis.The Non-Uniform Rational B-spline(NURBS)basis functions,which are used to construct the geometry of the structures,are employed to discretize the physical unknowns in the boundary integral formulations of the governing equations.Bezier extraction technique is employed to accelerate the evaluation of NURBS basis functions.We adopt a radial integration method to address the additional domain integrals.The numerical examples demonstrate the advantage of IGABEM in dimension reduction and the seamless connection between CAD and numerical analysis.
基金We acknowledge the support of the National Natural Science Foundation of China(NSFC)under Grant Nos.51904202 and 11702238Stephane Bordas thanks the financial support of Intuitive modeling and SIMulation platform(IntuiSIM)(PoC17/12253887)grant by Luxembourg National Research Fund.
文摘This paper proposes a novel optimization framework in passive control techniques to reduce noise pollution.The geometries of the structures are represented by Catmull-Clark subdivision surfaces,which are able to build gap-free Computer-Aided Design models and meanwhile tackle the extraordinary points that are commonly encountered in geometricmodelling.The acoustic fields are simulated using the isogeometric boundary elementmethod,and a density-based topology optimization is conducted to optimize distribution of sound-absorbing materials adhered to structural surfaces.The approach enables one to perform acoustic optimization from Computer-Aided Design models directly without needingmeshing and volume parameterization,thereby avoiding the geometric errors and time-consuming preprocessing steps in conventional simulation and optimization methods.The effectiveness of the present method is demonstrated by three dimensional numerical examples.