期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Natural alleles of a uridine 5'-diphospho-glucosyltransferase gene responsible for differential endosperm development between upland rice and paddy rice 被引量:1
1
作者 Zihao Wu Xiao Zhang +8 位作者 Guimei Chang Jun Yang Jinpeng Wan Feijun Wang Dayun Tao Jiawu Zhou Lianguang Shang Peng Xu Diqiu Yu 《Journal of Integrative Plant Biology》 SCIE CAS CSCD 2022年第1期135-148,共14页
Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here... Traditional upland rice generally exhibits insufficient grains resulting from abnormal endosperm development compared to paddy rice. However, the underlying molecular mechanism of this trait is poorly understood. Here,we cloned the uridine 5’-diphospho(UDP)-glucosyltransferase gene EDR1(Endosperm Development in Rice) responsible for differential endosperm development between upland rice and paddy rice by performing quantitative trait loci analysis and map-based cloning. EDR1 was highly expressed in developing seeds duringgrain filling. Natural variations in EDR1 significantly reduced the UDP-glucosyltransferase activity of EDR1 YZNcompared to EDR1 YD1,resulting in abnormal endosperm development in the near-isogenic line, accompanied by insufficient grains and changes in grain quality.By analyzing the distribution of the two alleles EDR1 YD1 and EDR1 YZNamong diverse paddy rice and upland rice varieties, we discovered that EDR1 was conserved in upland rice, but segregated in paddy rice. Further analyses of grain chalkiness in the alleles of EDR1 YD1 and EDR1 YZNvarieties indicated that rice varieties harboring EDR1 YZNand EDR1 YD1 preferentially showed high chalkiness, and low chalkiness,respectively. Taken together, these results suggest that the UDP-glucosyltransferase gene EDR1 is an important determinant controlling differential endosperm development between upland rice and paddy rice. 展开更多
关键词 EDR1 endosperm development grain quality UDP-GLUCOSYLTRANSFERASE upland rice
原文传递
A hybrid sterile locus leads to the linkage drag of interspecific hybrid progenies
2
作者 Mianmian Wang Jun Yang +4 位作者 Jinpeng Wan Dayun Tao Jiawu Zhou Diqiu Yu Peng Xu 《Plant Diversity》 SCIE CAS CSCD 2020年第5期370-375,共6页
Interspecific hybridization plays an important role in rice breeding by broadening access to desirable traits such as disease resistance and improving yields.However,interspecific hybridization is often hindered by hy... Interspecific hybridization plays an important role in rice breeding by broadening access to desirable traits such as disease resistance and improving yields.However,interspecific hybridization is often hindered by hybrid sterility,linkage drag,and distorted segregation.To mine for favorable genes from Oryza glaberrima,we cultivated a series of BC4 introgression lines(ILs)of O.glaberrima in the japonica rice variety background(Dianjingyou 1)in which the IL-2769(BC4F10)showed longer sterile lemmas,wider grains and spreading panicles compared with its receptor parent,suggesting that linkage drag may have occurred.Based on the BC5F2 population,a hybrid sterility locus,S20,a long sterile lemma locus,G1-g,and a new grain width quantitative trait locus(QTL),qGW7,were mapped in the linkage region about 15 centimorgan(cM)from the end of the short arm of chromosome 7.The hybrid sterility locus S20 from O.glaberrima eliminated male gametes of Oryza sativa,and male gametes carrying the alleles of O.sativa in the heterozygotes were aborted completely.In addition,the homozygotes presented a genotype of O.glaberrima,and homozygous O.sativa were not produced.Surprisingly,the linked traits G1-g and qGW7 showed similar segregation distortion.These results indicate that S20 was responsible for the linkage drag.As a large number of detected hybrid sterility loci are widely distributed on rice chromosomes,we suggest that hybrid sterility loci are the critical factors for the linkage drag in interspecific and subspecific hybridization of rice. 展开更多
关键词 Interspecific hybridization Linkage drag Hybrid sterility Segregation distortion
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部