Modem network security devices employ packet classification and pattern matching algorithms to inspect packets. Due to the complexity and heterogeneity of different search data structures, it is difficult for existing...Modem network security devices employ packet classification and pattern matching algorithms to inspect packets. Due to the complexity and heterogeneity of different search data structures, it is difficult for existing algorithms to leverage modern hardware platforms to achieve high performance. This paper presents a Structural Compression (SC) method that optimizes the data structures of both algorithms. It reviews both algorithms under the model of search space decomposition, and homogenizes their search data structures. This approach not only guarantees deterministic lookup speed but also optimizes the data structure for efficient implementation oi1 many-core platforms. The performance evaluation reveals that the homogeneous data structure achieves 10Gbps line-rate 64byte packet classification throughput and multi-Gbps deep inspection speed.展开更多
Network monitoring is receiving more attention than ever with the need for a self-driving network to tackle increasingly severe network management challenges. Advanced management applications rely on traffic data anal...Network monitoring is receiving more attention than ever with the need for a self-driving network to tackle increasingly severe network management challenges. Advanced management applications rely on traffic data analyses, which require network monitoring to flexibly provide comprehensive traffic characteristics. Moreover, in virtualized environments, software network monitoring is constrained by available resources and requirements of cloud operators. In this paper, Trident, a policy-based network monitoring system at the host, is proposed. Trident is a novel monitoring approach, off-path configurable streaming, which offers remote analyzers a fine-grained holistic view of the network traffic. A novel fast path packet classification algorithm and a corresponding cached flow form are also proposed to improve monitoring efficiency. Evaluated in a practical deployment, Trident demonstrates negligible interference with forwarding and requires no additional software dependencies. Trident has been deployed in production networks of several Tier-IV datacenters.展开更多
文摘Modem network security devices employ packet classification and pattern matching algorithms to inspect packets. Due to the complexity and heterogeneity of different search data structures, it is difficult for existing algorithms to leverage modern hardware platforms to achieve high performance. This paper presents a Structural Compression (SC) method that optimizes the data structures of both algorithms. It reviews both algorithms under the model of search space decomposition, and homogenizes their search data structures. This approach not only guarantees deterministic lookup speed but also optimizes the data structure for efficient implementation oi1 many-core platforms. The performance evaluation reveals that the homogeneous data structure achieves 10Gbps line-rate 64byte packet classification throughput and multi-Gbps deep inspection speed.
基金supported by the National Natural Science Foundation of China (No. 61872212)。
文摘Network monitoring is receiving more attention than ever with the need for a self-driving network to tackle increasingly severe network management challenges. Advanced management applications rely on traffic data analyses, which require network monitoring to flexibly provide comprehensive traffic characteristics. Moreover, in virtualized environments, software network monitoring is constrained by available resources and requirements of cloud operators. In this paper, Trident, a policy-based network monitoring system at the host, is proposed. Trident is a novel monitoring approach, off-path configurable streaming, which offers remote analyzers a fine-grained holistic view of the network traffic. A novel fast path packet classification algorithm and a corresponding cached flow form are also proposed to improve monitoring efficiency. Evaluated in a practical deployment, Trident demonstrates negligible interference with forwarding and requires no additional software dependencies. Trident has been deployed in production networks of several Tier-IV datacenters.