Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolyte...Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolytes.Metallic Li anode is required for pursuing high power density(>300 Wh kg^-1)for solid-state batteries[1,2].展开更多
All-solid-state lithium batteries(ASSLBs)have attracted increasing attention due to their high safety and energy density.Among all corresponding solid electrolytes,sulfide electrolytes are considered to be the most pr...All-solid-state lithium batteries(ASSLBs)have attracted increasing attention due to their high safety and energy density.Among all corresponding solid electrolytes,sulfide electrolytes are considered to be the most promising ion conductors due to high ionic conductivities.Despite this,many challenges remain in the application of ASSLBs,including the stability of sulfide electrolytes,complex interfacial issues between sulfide electrolytes and oxide electrodes as well as unstable anodic interfaces.Although oxide cathodes remain the most viable electrode materials due to high stability and industrialization degrees,the matching of sulfide electrolytes with oxide cathodes is challenging for commercial use in ASSLBs.Based on this,this review will present an overview of emerging ASSLBs based on sulfide electrolytes and oxide cathodes and high-light critical properties such as compatible electrolyte/electrode interfaces.And by considering the current challenges and opportunities of sulfide electrolyte-based ASSLBs,possible research directions and perspectives are discussed.展开更多
基金financially supported by Ganfeng Lithium Co., Ltd.
文摘Various solid electrolytes,such as sulfides(10^-3-10^-2 S cm^-1)and oxides(10^-4–10^-3 S cm^-1)are explored and developed to solve the safety problems in commercial Li-ion batteries using liquid flammable electrolytes.Metallic Li anode is required for pursuing high power density(>300 Wh kg^-1)for solid-state batteries[1,2].
基金supported by the National Key R&D Program of China(Grant No.2018YFB0905400)the National Natural Science Foundation of China(Grant Nos.51872303,U1964205,51902321)+4 种基金the Zhejiang Provincial Natural Science Foundation of China(Grant No.LD18E020004,LY18E020018)the Ningbo S&T Innovation 2025 Major Special Programme(Grant Nos.2018B10061,2018B10087,2019B10044)the Natural Science Foundation of Ningbo(Grant Nos.2018A610010,2019A610007)the Jiangxi Provincial Key R&D Program of China(Grant No.20182ABC28007)the Youth Innovation Promotion Association CAS(2017342).
文摘All-solid-state lithium batteries(ASSLBs)have attracted increasing attention due to their high safety and energy density.Among all corresponding solid electrolytes,sulfide electrolytes are considered to be the most promising ion conductors due to high ionic conductivities.Despite this,many challenges remain in the application of ASSLBs,including the stability of sulfide electrolytes,complex interfacial issues between sulfide electrolytes and oxide electrodes as well as unstable anodic interfaces.Although oxide cathodes remain the most viable electrode materials due to high stability and industrialization degrees,the matching of sulfide electrolytes with oxide cathodes is challenging for commercial use in ASSLBs.Based on this,this review will present an overview of emerging ASSLBs based on sulfide electrolytes and oxide cathodes and high-light critical properties such as compatible electrolyte/electrode interfaces.And by considering the current challenges and opportunities of sulfide electrolyte-based ASSLBs,possible research directions and perspectives are discussed.