The polypropylene(PP) nanocomposites filled with pretreated halloysite nanotubes(HNTs) were prepared by the melt-blending method. Before filling, the as-received HNTs powder was at first purified and then modified. Th...The polypropylene(PP) nanocomposites filled with pretreated halloysite nanotubes(HNTs) were prepared by the melt-blending method. Before filling, the as-received HNTs powder was at first purified and then modified. The characterization tests showed that the purified HNTs had less impurity and more uniform pore size distribution and the surface hydrophobicity of the modified HNTs was obviously improved. The mechanical and tribological properties of the PP/HNTs nanocomposites were extensively investigated. The results showed that the tensile, bending and notched impact strength of the PP/HNTs nanocomposites was somewhat improved, but the wear resistance of the PP/HNTs nanocomposites was obviously enhanced.展开更多
基金supported by the Talent Introduction Fund of the Yangzhou University(2012)the Zhejiang High Technology Research Institute of Yangzhou University(2017)+6 种基金the Key Research Project-Industry Foresight and General Key Technology of Yangzhou(YZ2015020)the Innovative Talent Program of Green Yang Golden Phoenix(yzlyjfjh2015CX073)the Yangzhou Social Development Project(YZ2016072)the Jiangsu Province Six Talent Peaks Project(2014-XCL-013)the Jiangsu Province Science and Technology Support Project(BE2014613)the Jiangsu Industrial-Academic-Research Prospective Joint Project(BY2016069-02)the Project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘The polypropylene(PP) nanocomposites filled with pretreated halloysite nanotubes(HNTs) were prepared by the melt-blending method. Before filling, the as-received HNTs powder was at first purified and then modified. The characterization tests showed that the purified HNTs had less impurity and more uniform pore size distribution and the surface hydrophobicity of the modified HNTs was obviously improved. The mechanical and tribological properties of the PP/HNTs nanocomposites were extensively investigated. The results showed that the tensile, bending and notched impact strength of the PP/HNTs nanocomposites was somewhat improved, but the wear resistance of the PP/HNTs nanocomposites was obviously enhanced.