NASICON-type Na_(3)V_(2)(PO_(4))_(3) is a promising electrode material for developing advanced sodium-ion batteries.Preparing Na_(3)V_(2)(PO_(4))_(3) with good performance by a cost-effective and large-scale method is...NASICON-type Na_(3)V_(2)(PO_(4))_(3) is a promising electrode material for developing advanced sodium-ion batteries.Preparing Na_(3)V_(2)(PO_(4))_(3) with good performance by a cost-effective and large-scale method is significant for industrial applications.In this work,a porous Na_(3)V_(2)(PO_(4))_(3)/C cathode material with excellent electrochemical performance is successfully prepared by an agar-gel combined with freeze-drying method.The Na_(3)V_(2)(PO_(4))_(3)/C cathode displayed specific capacities of 113.4 mAh·g^(-1),107.0 mAh·g^(-1) and 87.1 mAh·g^(-1) at 0.1 C,1 C and 10 C,respectively.For the first time,the 500-mAh soft-packed symmetrical sodium-ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C electrodes are successfully fabricated.The 500-mAh symmetrical batteries exhibit outstanding low temperature performance with a capacity retention of 83%at 0℃ owing to the rapid sodium ion migration ability and structural stability of Na_(3)V_(2)(PO_(4))_(3)/C.Moreover,the thermal runaway features are revealed by accelerating rate calorimetry(ARC)test for the first time.Thermal stability and safety of the symmetrical batteries are demonstrated to be better than lithium-ion batteries and some reported sodium-ion batteries.Our work makes it clear that the soft-packed symmetrical sodium ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C have a prospect of practical application in high safety requirement fields.展开更多
Electrolyte design strategies are closely related to the capacities, cycle life and safety of sodium–ion batteries. In this study, we aimed to optimize electrolyte with the focus on engineering aspects. The basic phy...Electrolyte design strategies are closely related to the capacities, cycle life and safety of sodium–ion batteries. In this study, we aimed to optimize electrolyte with the focus on engineering aspects. The basic physicochemical properties including ionic conductivity, viscosity,wettability and thermochemical stability of the electrolytes using Na PF6 as the solute and the mixed solvent with different components of EMC,DMC or DEC in PC or EC were systematically measured. Ah pouch cell with NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon electrodes was used to evaluate the performance of the prepared electrolytes. By using the Inductive Coupled Plasma Emission Spectrometer(ICP), X-ray photoelectron spectroscopy(XPS), Thermogravimetric-differential scanning calorimetry(TG-DSC) and Accelerating Rate Calorimeter(ARC), we show that an optimized electrolyte can effectively promote the formation of a protective interfacial layer on two electrodes, which not only retards parasitic reactions between the electrodes and electrolyte but also suppresses dissolution of metal ions from the cathode. With an optimized electrolyte, a NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon cell can attain 56.16% capacity retention under the low temperature of -40℃, and can be able to retain 80%capacity retention after more than 2500 cycles while presenting excellent thermal safety.展开更多
As one of the most promising cathodes for sodium-ion batteries(SIBs),the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis.However,their applica...As one of the most promising cathodes for sodium-ion batteries(SIBs),the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis.However,their applications are still hindered by the problems of poor moisture stability and sluggish Na^(+)diffusion caused by intrinsic structural Jahn–Teller distortion.Herein,we demonstrate a new approach to settle the above issues through introducing K^(+)into the structures of Ni/Mn-based materials.The physicochemical characterizations reveal that K^(+)induces atomic surface reorganization to form the birnessite-type K_(2)Mn_(4)O_(8).Combining with the phosphate,the mixed coating layer protects the cathodes from moisture and hinders metal dissolution into the electrolyte effectively.Simultaneously,K^(+)substitution at Na site in the bulk structure can not only widen the lattice-spacing for favoring Na^(+)diffusion,but also work as the rivet to restrain the grain crack upon cycling.The as achieved K^(+)-decorated P2-Na_(0.67)Mn_(0.75)Ni_(0.2)5O_(2)(NKMNO@KM/KP)cathodes are tested in both coin cell and pouch cell configurations using Na metal or hard carbon(HC)as anodes.Impressively,the NKMNO@KM/KP||Na half-cell demonstrates a high rate performance of 50 C and outstanding cycling performance of 90.1%capacity retention after 100 cycles at 5 C.Furthermore,the NKMNO@KM/KP||HC fullcell performed a promising energy density of 213.9 Wh·kg^(−1).This performance significantly outperforms most reported state-ofthe-art values.Additionally,by adopting this strategy on O3-NaMn_(0.5)Ni_(0.5)O_(2),we further proved the universality of this method on layered cathodes for SIBs.展开更多
Hydrogen safety in storage and transport is one of the major obstacles for the widespread adoption of hydrogen fuel cells,making it critical to assuage public concerns on the safety of compressed hydrogen storage.Meth...Hydrogen safety in storage and transport is one of the major obstacles for the widespread adoption of hydrogen fuel cells,making it critical to assuage public concerns on the safety of compressed hydrogen storage.Methanol in bountiful supply is a promising hydrogen energy carrier.Accordingly,a novel MSR-HT-PEMFC system coupling the hydrogen production via methanol steam reforming(MSR)and energy generation via high temperature proton exchange membrane fuel cell(HT-PEMFC)was firstly introduced by Prof.Zi-Feng Ma from Shanghai Jiaotong University and Prof.Shan-Tung Tu from East China University of Science and Technology,in collaboration with Shanghai Palcan Energy Co.Ltd.The MSRHT-PEMFC system eliminates the potential risks of compressed hydrogen storage.展开更多
基金This work was supported by the National Key Research and Development Program(2016YFB0901505)the Natural Science Foundation of China(22005190,21938005)+1 种基金the Science&Technology Commission of Shanghai Municipality(19DZ1205500)Zhejiang Key Research and Development Program(2020C01128).
文摘NASICON-type Na_(3)V_(2)(PO_(4))_(3) is a promising electrode material for developing advanced sodium-ion batteries.Preparing Na_(3)V_(2)(PO_(4))_(3) with good performance by a cost-effective and large-scale method is significant for industrial applications.In this work,a porous Na_(3)V_(2)(PO_(4))_(3)/C cathode material with excellent electrochemical performance is successfully prepared by an agar-gel combined with freeze-drying method.The Na_(3)V_(2)(PO_(4))_(3)/C cathode displayed specific capacities of 113.4 mAh·g^(-1),107.0 mAh·g^(-1) and 87.1 mAh·g^(-1) at 0.1 C,1 C and 10 C,respectively.For the first time,the 500-mAh soft-packed symmetrical sodium-ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C electrodes are successfully fabricated.The 500-mAh symmetrical batteries exhibit outstanding low temperature performance with a capacity retention of 83%at 0℃ owing to the rapid sodium ion migration ability and structural stability of Na_(3)V_(2)(PO_(4))_(3)/C.Moreover,the thermal runaway features are revealed by accelerating rate calorimetry(ARC)test for the first time.Thermal stability and safety of the symmetrical batteries are demonstrated to be better than lithium-ion batteries and some reported sodium-ion batteries.Our work makes it clear that the soft-packed symmetrical sodium ion batteries based on Na_(3)V_(2)(PO_(4))_(3)/C have a prospect of practical application in high safety requirement fields.
基金supported by Natural Science Foundation of China,China(21938005,21676165)Science&Technology Commission of Shanghai Municipality,China(19DZ1205500)+1 种基金Zhejiang Key Research and Development Program,China(2020C01128)National Key Research and Development Program,China(2016YFB0901500)。
文摘Electrolyte design strategies are closely related to the capacities, cycle life and safety of sodium–ion batteries. In this study, we aimed to optimize electrolyte with the focus on engineering aspects. The basic physicochemical properties including ionic conductivity, viscosity,wettability and thermochemical stability of the electrolytes using Na PF6 as the solute and the mixed solvent with different components of EMC,DMC or DEC in PC or EC were systematically measured. Ah pouch cell with NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon electrodes was used to evaluate the performance of the prepared electrolytes. By using the Inductive Coupled Plasma Emission Spectrometer(ICP), X-ray photoelectron spectroscopy(XPS), Thermogravimetric-differential scanning calorimetry(TG-DSC) and Accelerating Rate Calorimeter(ARC), we show that an optimized electrolyte can effectively promote the formation of a protective interfacial layer on two electrodes, which not only retards parasitic reactions between the electrodes and electrolyte but also suppresses dissolution of metal ions from the cathode. With an optimized electrolyte, a NaNi_(1/3)Fe_(1/3)Mn_(1/3)O_(2)/hard carbon cell can attain 56.16% capacity retention under the low temperature of -40℃, and can be able to retain 80%capacity retention after more than 2500 cycles while presenting excellent thermal safety.
基金the National Natural Science Foundation of China(Nos.52271222,51971146,51971147,52171218,22005190,and 21938005)We also acknowledge the supports of Shanghai Outstanding Academic Leaders Plan,the Innovation Program of Shanghai Municipal Education Commission(No.2019-01-07-00-07-E00015)+4 种基金Shanghai Pujiang Program(No.21PJ1411100)Shanghai Rising-Star Program(Nos.20QA1407100 and 21QA1406500)the Shanghai Science and Technology Commission(Nos.21010503100,20ZR1438400 and 22ZR1443900)Zhejiang Provincial Natural Science Foundation of China(No.LGG22F010017)the Key R&D Program of Zhejiang Province(Nos.2019C01155 and 2020C01128).
文摘As one of the most promising cathodes for sodium-ion batteries(SIBs),the layered transition metal oxides have attracted great attentions due to their high specific capacities and facile synthesis.However,their applications are still hindered by the problems of poor moisture stability and sluggish Na^(+)diffusion caused by intrinsic structural Jahn–Teller distortion.Herein,we demonstrate a new approach to settle the above issues through introducing K^(+)into the structures of Ni/Mn-based materials.The physicochemical characterizations reveal that K^(+)induces atomic surface reorganization to form the birnessite-type K_(2)Mn_(4)O_(8).Combining with the phosphate,the mixed coating layer protects the cathodes from moisture and hinders metal dissolution into the electrolyte effectively.Simultaneously,K^(+)substitution at Na site in the bulk structure can not only widen the lattice-spacing for favoring Na^(+)diffusion,but also work as the rivet to restrain the grain crack upon cycling.The as achieved K^(+)-decorated P2-Na_(0.67)Mn_(0.75)Ni_(0.2)5O_(2)(NKMNO@KM/KP)cathodes are tested in both coin cell and pouch cell configurations using Na metal or hard carbon(HC)as anodes.Impressively,the NKMNO@KM/KP||Na half-cell demonstrates a high rate performance of 50 C and outstanding cycling performance of 90.1%capacity retention after 100 cycles at 5 C.Furthermore,the NKMNO@KM/KP||HC fullcell performed a promising energy density of 213.9 Wh·kg^(−1).This performance significantly outperforms most reported state-ofthe-art values.Additionally,by adopting this strategy on O3-NaMn_(0.5)Ni_(0.5)O_(2),we further proved the universality of this method on layered cathodes for SIBs.
文摘Hydrogen safety in storage and transport is one of the major obstacles for the widespread adoption of hydrogen fuel cells,making it critical to assuage public concerns on the safety of compressed hydrogen storage.Methanol in bountiful supply is a promising hydrogen energy carrier.Accordingly,a novel MSR-HT-PEMFC system coupling the hydrogen production via methanol steam reforming(MSR)and energy generation via high temperature proton exchange membrane fuel cell(HT-PEMFC)was firstly introduced by Prof.Zi-Feng Ma from Shanghai Jiaotong University and Prof.Shan-Tung Tu from East China University of Science and Technology,in collaboration with Shanghai Palcan Energy Co.Ltd.The MSRHT-PEMFC system eliminates the potential risks of compressed hydrogen storage.