Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning the...Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored.In this study,we unveil a layer delamination phenomenon of Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2)(NNM)within the 2.0-4.3 V voltage,attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni^(3+)/Ni^(4+)and anion redox reactions.By introducing Mg doping to diminished Ni-O antibonding,the anion oxidation-reduction reactions are effectively mitigated,and the structural integrity of the P2 phase remains firmly intact,safeguarding active sites and precluding the formation of novel interfaces.The Na_(0.67)Mg_(0.05)Ni_(0.25)Mn_(0.7)O_(2)(NMNM-5)exhibits a specific capacity of100.7 mA h g^(-1),signifying an 83%improvement compared to the NNM material within the voltage of2.0-4.3 V.This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.展开更多
Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in t...Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes.展开更多
Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehic...Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.展开更多
LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible cap...LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible capacity limits its replacement for LiCoO_(2) in high-end digital field.Herein,three-in-one modification,Na-doping and Al_(2)O_(3)@Li_(3)BO_(3) dual-coating simultaneously,is explored for single-crystalline LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(N-NCM@AB),which exhibits excellent high-voltage performance.N-NCM@AB displays a discharge-specific capacity of 201.8 mAh g^(−1) at 0.2 C with a high upper voltage of 4.6 V and maintains 158.9 mAh g^(−1) discharge capacity at 1 C over 200 cycles with the corresponding capacity retention of 87.8%.Remarkably,the N-NCM@AB||graphite pouch-type full cell retains 81.2% of its initial capacity with high working voltage of 4.4 V over 1600 cycles.More importantly,the fundamental understandings of three-in-one modification on surface morphology,crystal structure,and phase transformation of N-NCM@AB are clearly revealed.The Na+doped into the Li–O slab can enhance the bond energy,stabilize the crystal structure,and facilitate Li+transport.Additionally,the interior surface layer of Li^(+)-ions conductor Li_(3)BO_(3) relieves the charge transfer resistance with surface coating,whereas the outer surface Al_(2)O_(3) coating layer is beneficial for reducing the active materials loss and alleviating the electrode/electrolyte parasite reaction.This three-in-one strategy provides a reference for the further research on the performance attenuation mechanism of NCM,paving a new avenue to boost the high-voltage performance of NCM cathode in Li-ion batteries.展开更多
基金the financial support from the National Natural Science Foundation of China(52202338)。
文摘Advancing high-voltage stability of layered sodium-ion oxides represents a pivotal avenue for their progress in energy storage applications.Despite this,a comprehensive understanding of the mechanisms underpinning their structural deterioration at elevated voltages remains insufficiently explored.In this study,we unveil a layer delamination phenomenon of Na_(0.67)Ni_(0.3)Mn_(0.7)O_(2)(NNM)within the 2.0-4.3 V voltage,attributed to considerable volumetric fluctuations along the c-axis and lattice oxygen reactions induced by the simultaneous Ni^(3+)/Ni^(4+)and anion redox reactions.By introducing Mg doping to diminished Ni-O antibonding,the anion oxidation-reduction reactions are effectively mitigated,and the structural integrity of the P2 phase remains firmly intact,safeguarding active sites and precluding the formation of novel interfaces.The Na_(0.67)Mg_(0.05)Ni_(0.25)Mn_(0.7)O_(2)(NMNM-5)exhibits a specific capacity of100.7 mA h g^(-1),signifying an 83%improvement compared to the NNM material within the voltage of2.0-4.3 V.This investigation underscores the intricate interplay between high-voltage stability and structural degradation mechanisms in layered sodium-ion oxides.
基金supported by National Natural Science Foundation of China (52070194,52073309)Natural Science Foundation of Hunan Province (2022JJ20069)。
文摘Generally,layered Ni-rich cathode materials exhibit the morphology of polycrystalline secondary sphere composed of numerous primary particles.While the arrangement of primary particles plays a very important role in the properties of Ni-rich cathodes.The disordered particle arrangement is harmful to the cyclic performance and structural stability,yet the fundamental understanding of disordered structure on the structural degradation behavior is unclarified.Herein,we have designed three kinds of LiNi_(0.83)Co_(0.06)Mn_(0.11)O_(2) cathode materials with different primary particle orientations by regulating the precursor coprecipitation process.Combining finite element simulation and in-situ characterization,the Li^(+)transport and structure evolution behaviors of different materials are unraveled.Specifically,the smooth Li^(+)diffusion minimizes the reaction heterogeneity,homogenizes the phase transition within grains,and mitigates the anisotropic microstructural change,thereby modulating the crack evolution behavior.Meanwhile,the optimized structure evolution ensures radial tight junctions of the primary particles,enabling enhanced Li^(+)diffusion during dynamic processes.Closed-loop bidirectional enhancement mechanism becomes critical for grain orientation regulation to stabilize the cyclic performance.This precursor engineering with particle orientation regulation provides the useful guidance for the structural design and feature enhancement of Ni-rich layered cathodes.
基金the National Natural Science Foundation of China(52070194,52073309,51902347,51908555)Natural Science Foundation of Hunan Province(2022JJ20069,2020JJ5741).
文摘Benefited from its high process feasibility and controllable costs,binary-metal layered structured LiNi_(0.8)Mn_(0.2)O_(2)(NM)can effectively alleviate the cobalt supply crisis under the surge of global electric vehicles(EVs)sales,which is considered as the most promising nextgeneration cathode material for lithium-ion batteries(LIBs).However,the lack of deep understanding on the failure mechanism of NM has seriously hindered its application,especially under the harsh condition of high-voltage without sacrifices of reversible capacity.Herein,singlecrystal LiNi_(0.8)Mn_(0.2)O_(2) is selected and compared with traditional LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)(NCM),mainly focusing on the failure mechanism of Cofree cathode and illuminating the significant effect of Co element on the Li/Ni antisite defect and dynamic characteristic.Specifically,the presence of high Li/Ni antisite defect in NM cathode easily results in the extremely dramatic H2/H3 phase transition,which exacerbates the distortion of the lattice,mechanical strain changes and exhibits poor electrochemical performance,especially under the high cutoff voltage.Furthermore,the reaction kinetic of NM is impaired due to the absence of Co element,especially at the single-crystal architecture.Whereas,the negative influence of Li/Ni antisite defect is controllable at low current densities,owing to the attenuated polarization.Notably,Co-free NM can exhibit better safety performance than that of NCM cathode.These findings are beneficial for understanding the fundamental reaction mechanism of single-crystal Ni-rich Co-free cathode materials,providing new insights and great encouragements to design and develop the next generation of LIBs with low-cost and high-safety performances.
基金We gratefully acknowledge the financial support from the National Natural Science Foundation of China(52070194,51902347,51908555,and 51822812)Natural Science Foundation of Hunan Province(2020JJ5741)the Graduate Innovation Project of Central South University(2020zzts093).
文摘LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2) is extensively researched as one of the most widely used commercially materials for Li-ion batteries at present.However,the poor high-voltage performance(≥4.3 V)with low reversible capacity limits its replacement for LiCoO_(2) in high-end digital field.Herein,three-in-one modification,Na-doping and Al_(2)O_(3)@Li_(3)BO_(3) dual-coating simultaneously,is explored for single-crystalline LiNi_(0.5)Co_(0.2)Mn_(0.3)O_(2)(N-NCM@AB),which exhibits excellent high-voltage performance.N-NCM@AB displays a discharge-specific capacity of 201.8 mAh g^(−1) at 0.2 C with a high upper voltage of 4.6 V and maintains 158.9 mAh g^(−1) discharge capacity at 1 C over 200 cycles with the corresponding capacity retention of 87.8%.Remarkably,the N-NCM@AB||graphite pouch-type full cell retains 81.2% of its initial capacity with high working voltage of 4.4 V over 1600 cycles.More importantly,the fundamental understandings of three-in-one modification on surface morphology,crystal structure,and phase transformation of N-NCM@AB are clearly revealed.The Na+doped into the Li–O slab can enhance the bond energy,stabilize the crystal structure,and facilitate Li+transport.Additionally,the interior surface layer of Li^(+)-ions conductor Li_(3)BO_(3) relieves the charge transfer resistance with surface coating,whereas the outer surface Al_(2)O_(3) coating layer is beneficial for reducing the active materials loss and alleviating the electrode/electrolyte parasite reaction.This three-in-one strategy provides a reference for the further research on the performance attenuation mechanism of NCM,paving a new avenue to boost the high-voltage performance of NCM cathode in Li-ion batteries.