Introduction At the rock face of neurobiology stand seven global brain initiatives.Through them,much of the global funding for neuroscience and neurotechnology(over 9 billion USD)is being channeled,and the rapid devel...Introduction At the rock face of neurobiology stand seven global brain initiatives.Through them,much of the global funding for neuroscience and neurotechnology(over 9 billion USD)is being channeled,and the rapid development of new techniques and technologies is the result.Some ethicists have questioned the sufficiency of the pre-existing ethical and legal frameworks to provide adequate oversight for such rapidly-emerging neurotechnologies and their often-unique applications and implications.展开更多
Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatm...Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.展开更多
Accumulating evidence has confirmed the links between transfer RNA(tRNA)modifications and tumor progression.The present study is the first to explore the role of tRNA methyltransferase 5(TRMT5),which catalyzes the m1G...Accumulating evidence has confirmed the links between transfer RNA(tRNA)modifications and tumor progression.The present study is the first to explore the role of tRNA methyltransferase 5(TRMT5),which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma(HCC)progression.Here,based on bioinformatics and clinical analyses,we identified that TRMT5 expression was upregulated in HCC,which correlated with poor prognosis.Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro,which may be partially explained by declined extracellular acidification rate(ECAR)and oxygen consumption rate(OCR).Mechanistically,we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1(HIF-1)signaling pathway by preventing HIF-1αstability through the enhancement of cellular oxygen content.Moreover,our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α.In conclusion,our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs.Thus,TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.展开更多
基金supported by grants from the National Natural Science Foundation of China(31970940 and 32171014).
文摘Introduction At the rock face of neurobiology stand seven global brain initiatives.Through them,much of the global funding for neuroscience and neurotechnology(over 9 billion USD)is being channeled,and the rapid development of new techniques and technologies is the result.Some ethicists have questioned the sufficiency of the pre-existing ethical and legal frameworks to provide adequate oversight for such rapidly-emerging neurotechnologies and their often-unique applications and implications.
基金supported in part by the National Key R&D Program of China(2021YFC2700403 and 2018YFA0800102)the National Natural Science Foundation of China(31871249 and 31871452).
文摘Polycystic ovary syndrome (PCOS) is a highly familial and heritable endocrine disorder. Over half of the daughters born to women with PCOS may eventually develop their own PCOS-related symptoms. Progress in the treatment of PCOS is currently hindered by the complexity of its clinical manifestations and incomplete knowledge of its etiopathogenesis. Various animal models, including experimentally induced, naturally occurring, and spontaneously arising ones, have been established to emulate a wide range of phenotypical and pathological traits of human PCOS. These studies have led to a paradigm shift in understanding the genetic, developmental, and evolutionary origins of this disorder. Furthermore, emerging evidence suggests that animal models are useful in evaluating state-of-the-art drugs and treatments for PCOS. This review aims to provide a comprehensive summary of recent studies of PCOS in animal models, highlighting the power of these disease models in understanding the biology of PCOS and aiding high-throughput approaches.
基金This work was supported by the National Key Research and Development Program of China(Nos.2020YFA0113003 and 2018YFC1004803)the Fundamental Research Funds for the Central Universities.
文摘Accumulating evidence has confirmed the links between transfer RNA(tRNA)modifications and tumor progression.The present study is the first to explore the role of tRNA methyltransferase 5(TRMT5),which catalyzes the m1G37 modification of mitochondrial tRNAs in hepatocellular carcinoma(HCC)progression.Here,based on bioinformatics and clinical analyses,we identified that TRMT5 expression was upregulated in HCC,which correlated with poor prognosis.Silencing TRMT5 attenuated HCC proliferation and metastasis both in vivo and in vitro,which may be partially explained by declined extracellular acidification rate(ECAR)and oxygen consumption rate(OCR).Mechanistically,we discovered that knockdown of TRMT5 inactivated the hypoxia-inducible factor-1(HIF-1)signaling pathway by preventing HIF-1αstability through the enhancement of cellular oxygen content.Moreover,our data indicated that inhibition of TRMT5 sensitized HCC to doxorubicin by adjusting HIF-1α.In conclusion,our study revealed that targeting TRMT5 could inhibit HCC progression and increase the susceptibility of tumor cells to chemotherapy drugs.Thus,TRMT5 might be a carcinogenesis candidate gene that could serve as a potential target for HCC therapy.