期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Synthesis of hexagonal and triangular Fe3O4 nanosheets via seed-mediated solvothermal growth 被引量:2
1
作者 Chunhui Li Ruixue Wei Yanmin Xu Ailing Sun Liuhe Wei 《Nano Research》 SCIE EI CAS CSCD 2014年第4期536-543,共8页
Hexagonal and triangular monodisperse Fe3O4 nanosheets have been synthesized via a two-step microemulsion solvothermal approach in which uniform Fe3O4 nanoparticles are first prepared and then these hydrophobic nanocr... Hexagonal and triangular monodisperse Fe3O4 nanosheets have been synthesized via a two-step microemulsion solvothermal approach in which uniform Fe3O4 nanoparticles are first prepared and then these hydrophobic nanocrystals are dispersed in a uniform microemulsion environment as "seeds" for further re-growth through a secondary solvothermal process. The growth of anisotropic morphologies has been explained by the presence and orientation of twin planes in the face-centered cubic Fe3O4 which direct the shape of the growing particles. In particular, reentrant grooves resulting from twin planes are favorable sites for the addition of adatoms, leading to anisotropic growth. Triangular nanosheets are believed to contain one twin face which directs the growth of the primary particles in two dimensions. Hexagonal nanosheets are believed to contain two parallel planes that allow the growth edges to regenerate one another. The growth mechanism is evidenced by the analysis of high-resolution transmission electron microscopy (HRTEM) results and the as-prepared Fe3O4 nanoparticles have been shown to be an effective catalyst in the synthesis of quinoxaline. 展开更多
关键词 Fe3O4 nanocrystal solvothermal synthesis anisotropic growth twin plane
原文传递
Anti-corrosive, weatherproof and self-healing polyurethane developed from hydrogenated hydroxyl-terminated polybutadiene toward surface-protective applications
2
作者 Yuanyuan LIU Xin DU +5 位作者 Hui WANG Yu YUAN Liuhe WEI Xingjiang LIU Ailing SUN Yuhan LI 《Frontiers of Materials Science》 SCIE CSCD 2022年第2期153-165,共13页
Self-healing polyurethane(PU)faces aging deterioration due to active dynamic bonds,which remain a challenging predicament for practical use.In this work,a novel strategy is developed to address this predicament by lev... Self-healing polyurethane(PU)faces aging deterioration due to active dynamic bonds,which remain a challenging predicament for practical use.In this work,a novel strategy is developed to address this predicament by leveraging the hydrophobicity and gas barrier of hydrogenated hydroxyl-terminated polybutadiene(HHPB).The dynamic oxime-carbamate bonds derived from 2,4-pentanedione dioxime(PDO)enable the elastomer to exhibit surface self-repairability upon applied mild heat and achieve~99.5%mechanical self-healing efficiency.The mechanical properties remained nearly intact after 30-d exposure to thermal oxidation,xenon lamp,acids,bases,and salts.Gas permeability,positron annihilation lifetime spectroscopy(PALS),and contact angle measurements reveal the pivotal role of gas barrier,free volume,and hydrophobicity in blocking undesirable molecules and ions which effectively protects the elastomer from deterioration.HHPB-PU also exhibits excellent adhesion to steel substrate.The shear strength achieves(3.02±0.42)MPa after heating at 80°C for 4 h,and(3.06±0.2)MPa after heating at 130°C for 0.5 h.Regarding its outstanding anti-corrosive and weatherproof performances,this self-healable elastomer is a promising candidate in surface-protective applications. 展开更多
关键词 hydrogenated hydroxyl-terminated polybutadiene HYDROPHOBICITY anti-aging performance SELF-HEALING surface protection
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部