【Objective】To optimize the steam explosion process condition for extracting polysaccharides from Pseudostellaria heterophylla.【Method】The effects of steam pressure,pressure-maintaining time and material moisture c...【Objective】To optimize the steam explosion process condition for extracting polysaccharides from Pseudostellaria heterophylla.【Method】The effects of steam pressure,pressure-maintaining time and material moisture content on the extraction of polysaccharides from Pseudostellaria heterophylla were studied by response surface methodology based on Box-Behnken design.【Result】The findings showed that each factor could significantly affect the test index,and the optimum condition was as follows:steam pressure 1.50 Mpa,pressuremaintaining time 46 s and material moisture content 46%.Under this condition,the verified experimental value of polysaccharides from Pseudostellaria heterophylla was 39.32%,indicating a relative standard deviation of 2.73%from the predictive value.Meanwhile,scanning electron microcopy(SEM)images showed that the surface physical structure of Pseudostellaria heterophylla was irregularly broken and cracked,which means the physical structure of Pseudostellaria heterophylla was changed and destroyed at the cellular level.【Conclusion】This experiment provides a new approach for the extraction of polysaccharides from Pseudostellaria heterophylla,as well as a reference for the resource utilization of Pseudostellaria heterophylla.展开更多
文摘【Objective】To optimize the steam explosion process condition for extracting polysaccharides from Pseudostellaria heterophylla.【Method】The effects of steam pressure,pressure-maintaining time and material moisture content on the extraction of polysaccharides from Pseudostellaria heterophylla were studied by response surface methodology based on Box-Behnken design.【Result】The findings showed that each factor could significantly affect the test index,and the optimum condition was as follows:steam pressure 1.50 Mpa,pressuremaintaining time 46 s and material moisture content 46%.Under this condition,the verified experimental value of polysaccharides from Pseudostellaria heterophylla was 39.32%,indicating a relative standard deviation of 2.73%from the predictive value.Meanwhile,scanning electron microcopy(SEM)images showed that the surface physical structure of Pseudostellaria heterophylla was irregularly broken and cracked,which means the physical structure of Pseudostellaria heterophylla was changed and destroyed at the cellular level.【Conclusion】This experiment provides a new approach for the extraction of polysaccharides from Pseudostellaria heterophylla,as well as a reference for the resource utilization of Pseudostellaria heterophylla.