期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
YOLOv8 for Fire and Smoke Recognition Algorithm Integrated with the Convolutional Block Attention Module
1
作者 Zhangchi Liu Risheng Zhang +1 位作者 Hao Zhong Yingjie Sun 《Open Journal of Applied Sciences》 2024年第1期159-170,共12页
The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Con... The complexity of fire and smoke in terms of shape, texture, and color presents significant challenges for accurate fire and smoke detection. To address this, a YOLOv8-based detection algorithm integrated with the Convolutional Block Attention Module (CBAM) has been developed. This algorithm initially employs the latest YOLOv8 for object recognition. Subsequently, the integration of CBAM enhances its feature extraction capabilities. Finally, the WIoU function is used to optimize the network’s bounding box loss, facilitating rapid convergence. Experimental validation using a smoke and fire dataset demonstrated that the proposed algorithm achieved a 2.3% increase in smoke and fire detection accuracy, surpassing other state-of-the-art methods. 展开更多
关键词 Object Recognition CBAM WioU State-of-the-Art Methods
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部