Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties.Digital planar holograms in particular can encode any optical transfer function with high cust...Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties.Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography.Here,we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization.The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer.While maintaining the total device footprint below 2 cm2,the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range,over a 148 nm spectral range and 926 channels.This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing.展开更多
The development of polymeric optical materials with a higher refractive index,transparency in the visible spectrum region and easier processability is increasingly desirable for advanced optical applications such as m...The development of polymeric optical materials with a higher refractive index,transparency in the visible spectrum region and easier processability is increasingly desirable for advanced optical applications such as microlenses,image sensors,and organic light-emitting diodes.Most acrylates have a low refractive index(around 1.50)which does not meet the high perfo rmance requirements of advanced optical materials.In this research,three novel acrylates were synthesized via a facile one-step approach and used to fabricate optical transparent polymers.All of the polymers reveal good optical properties including high transparency(≥90%)in the visible spectrum region and high refractive index values(1.6363)at 550 nm.Moreover,nanostructures of these acrylate polymers with various feature sizes including nanogratings and photonic crystals were successfully fabricated using nanoimprint lithography.These results indicate that these acrylates can be used in a wide range of optical and optoelectronic devices where nanopatterned films with high refractive index and transparency are required.展开更多
The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity.Neural probes are in vivo invasive devices that integrate sensor...The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity.Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution.State-of-the-art probes are limited by tradeoffs involving their lateral dimension,number of sensors,and ability to access independent stimulation sites.Here,we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices.For the first time,we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches.With this strategy,we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.展开更多
基金Work at the Molecular Foundry was supported by the Office of Science,Office of Basic Energy Sciences,of the United States Department of Energy under contract DEAC02-05CH11231This study is supported by the Air Force Office of Scientific Research,Air Force Material Command,USAF,under grant/contract FA9550-12-C-0077.
文摘Computer-generated planar holograms are a powerful approach for designing planar lightwave circuits with unique properties.Digital planar holograms in particular can encode any optical transfer function with high customizability and is compatible with semiconductor lithography techniques and nanoimprint lithography.Here,we demonstrate that the integration of multiple holograms on a single device increases the overall spectral range of the spectrometer and offsets any performance decrement resulting from miniaturization.The validation of a high-resolution spectrometer-on-chip based on digital planar holograms shows performance comparable with that of a macrospectrometer.While maintaining the total device footprint below 2 cm2,the newly developed spectrometer achieved a spectral resolution of 0.15 nm in the red and near infrared range,over a 148 nm spectral range and 926 channels.This approach lays the groundwork for future on-chip spectroscopy and lab-on-chip sensing.
基金supported by the Molecular Foundry,Lawrence Berkeley National Laboratory,which is supported by the Office of Science and Office of Basic Energy Sciences of the U.S.Department of Energy under Contract No.DE-AC02-05CH11231supported by National Natural Science Foundation of China (No.51573011)+2 种基金Natural Foundation of Jiangsu Province (No. BK20150272)Beijing Laboratory of Biomedical Materialsthe scholarship support from the program of the China Scholarship Council (No.201706880022) for study at Lawrence Berkeley National Laboratory
文摘The development of polymeric optical materials with a higher refractive index,transparency in the visible spectrum region and easier processability is increasingly desirable for advanced optical applications such as microlenses,image sensors,and organic light-emitting diodes.Most acrylates have a low refractive index(around 1.50)which does not meet the high perfo rmance requirements of advanced optical materials.In this research,three novel acrylates were synthesized via a facile one-step approach and used to fabricate optical transparent polymers.All of the polymers reveal good optical properties including high transparency(≥90%)in the visible spectrum region and high refractive index values(1.6363)at 550 nm.Moreover,nanostructures of these acrylate polymers with various feature sizes including nanogratings and photonic crystals were successfully fabricated using nanoimprint lithography.These results indicate that these acrylates can be used in a wide range of optical and optoelectronic devices where nanopatterned films with high refractive index and transparency are required.
文摘The combination of electrophysiology and optogenetics enables the exploration of how the brain operates down to a single neuron and its network activity.Neural probes are in vivo invasive devices that integrate sensors and stimulation sites to record and manipulate neuronal activity with high spatiotemporal resolution.State-of-the-art probes are limited by tradeoffs involving their lateral dimension,number of sensors,and ability to access independent stimulation sites.Here,we realize a highly scalable probe that features three-dimensional integration of small-footprint arrays of sensors and nanophotonic circuits to scale the density of sensors per cross-section by one order of magnitude with respect to state-of-the-art devices.For the first time,we overcome the spatial limit of the nanophotonic circuit by coupling only one waveguide to numerous optical ring resonators as passive nanophotonic switches.With this strategy,we achieve accurate on-demand light localization while avoiding spatially demanding bundles of waveguides and demonstrate the feasibility with a proof-of-concept device and its scalability towards high-resolution and low-damage neural optoelectrodes.