期刊文献+
共找到524篇文章
< 1 2 27 >
每页显示 20 50 100
A Simple Embedding Method for the Laplace-Beltrami Eigenvalue Problem onImplicit Surfaces
1
作者 Young Kyu Lee Shingyu Leung 《Communications on Applied Mathematics and Computation》 EI 2024年第2期1189-1216,共28页
We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal eq... We propose a simple embedding method for computing the eigenvalues and eigenfunctions of the Laplace-Beltrami operator on implicit surfaces.The approach follows an embedding approach for solving the surface eikonal equation.We replace the differential operator on the interface with a typical Cartesian differential operator in the surface neighborhood.Our proposed algorithm is easy to implement and efficient.We will give some two-and three-dimensional numerical examples to demonstrate the effectiveness of our proposed approach. 展开更多
关键词 Laplace-Beltrami operator Level set method Implicit representation EIGENVALUES Numerical PDEs
下载PDF
Atomically Dispersed Zinc Active Sites Efficiently Promote the Electrochemical Conversion of N_(2) to NH_(3)
2
作者 Yanjiao Wei Xinyu Wang +3 位作者 Mengjie Sun Min Ma Jian Tian Minhua Shao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第3期175-181,共7页
At present,the research on highly active and stable nitrogen reduction reaction catalysts is still challenging work for the electrosynthesis of ammonia(NH_(3)).Herein,we synthesized atomically dispersed zinc active si... At present,the research on highly active and stable nitrogen reduction reaction catalysts is still challenging work for the electrosynthesis of ammonia(NH_(3)).Herein,we synthesized atomically dispersed zinc active sites supported on N-doped carbon nanosheets(Zn/NC NSs)as an efficient nitrogen reduction reaction catalyst,which achieves a high ammonia yield of 46.62μg h^(-1)mg^(-1)_(cat).at-0.85 V(vs RHE)and Faradaic efficiency of 95.8%at-0.70 V(vs RHE).In addition,Zn/NC NSs present great stability and selectivity,and there is no significant change in NH_(3)rate and Faradaic efficiencies after multiple cycles.The structural characterization shows that the active center in the nitrogen reduction reaction process is the Zn-N_(4)sites in the catalyst.DFT calculation confirms that Zn/NC with Zn-N_(4)configuration has a lower energy barrier for the formation of^(*)NNH intermediate compared with pure N-doped carbon nanosheets(N-C NSs),thus promoting the hydrogenation kinetics in the whole nitrogen reduction reaction process. 展开更多
关键词 ELECTROCATALYSIS nitrogen reduction single-atom catalyst Zn-N_(4)
下载PDF
In Situ Growth of 2D Metal–Organic Framework Ion Sieve Interphase for Reversible Zinc Anodes
3
作者 Jing Sun Qinping Jian +2 位作者 Bin Liu Pengzhu Lin Tianshou Zhao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期158-166,共9页
Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrain... Zinc metal anodes are gaining popularity in aqueous electrochemical energy storage systems for their high safety,cost-effectiveness,and high capacity.However,the service life of zinc metal anodes is severely constrained by critical challenges,including dendrites,water-induced hydrogen evolution,and passivation.In this study,a protective two-dimensional metal–organic framework interphase is in situ constructed on the zinc anode surface with a novel gel vapor deposition method.The ultrathin interphase layer(~1μm)is made of layer-stacking 2D nanosheets with angstrom-level pores of around 2.1Å,which serves as an ion sieve to reject large solvent–ion pairs while homogenizes the transport of partially desolvated zinc ions,contributing to a uniform and highly reversible zinc deposition.With the shielding of the interphase layer,an ultra-stable zinc plating/stripping is achieved in symmetric cells with cycling over 1000 h at 0.5 mA cm−2 and~700 h at 1 mA cm^(−2),far exceeding that of the bare zinc anodes(250 and 70 h).Furthermore,as a proof-of-concept demonstration,the full cell paired with MnO_(2) cathode demonstrates improved rate performances and stable cycling(1200 cycles at 1 A g−1).This work provides fresh insights into interphase design to promote the performance of zinc metal anodes. 展开更多
关键词 2D MOF DESOLVATION INTERPHASE ion sieve zinc anode
下载PDF
2.5μm-Thick Ultrastrong Asymmetric Separator for Stable Lithium Metal Batteries
4
作者 Donghao Xie Zekun Wang +5 位作者 Xin Ma Yuchen Feng Xiaomin Tang Qiao Gu Yonghong Deng Ping Gao 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第6期106-117,共12页
Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.... Lithium metal batteries(LMBs)are considered the ideal choice for high volumetric energy density lithium-ion batteries,but uncontrolled lithium deposition poses a significant challenge to the stability of such devices.In this paper,we introduce a 2.5μm-thick asymmetric and ultrastrong separator,which can induce tissue-like lithium deposits.The asymmetric separator,denoted by utPE@Cu_(2)O,was prepared by selective synthesis of Cu_(2)O nanoparticles on one of the outer surfaces of a nanofibrous(diameter~10 nm)ultrastrong ultrahigh molecular weight polyethylene(UHMWPE)membrane.Microscopic analysis shows that the lithium deposits have tissue-like morphology,resulting in the symmetric lithium cells assembled using utPE@Cu_(2)O with symmetric Cu_(2)O coating exhibiting stable performance for over 2000 h of cycling.This work demonstrates the feasibility of a facile approach ultrathin separators for the deployment of lithium metal batteries,providing a pathway towards enhanced battery performance and safety. 展开更多
关键词 in situ SEI lithium deposition regulation SEPARATOR ultrastrong ULTRATHIN
下载PDF
Interfacial modification using the cross-linkable tannic acid for highly-efficient perovskite solar cells with excellent stability
5
作者 Xing Gao Lirong Rong +6 位作者 Fei Wu Yen-Hung Lin Ye Zeng Junhong Tan Rongxing He Cheng Zhong Linna Zhu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第4期236-244,共9页
Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caus... Although the performance of perovskite solar cells(PSCs)has been dramatically increased in recent years,stability is still the main obstacle preventing the PSCs from being commercial.PSC device instability can be caused by a variety of reasons,including ions diffusion,surface and grain boundary defects,etc.In this work,the cross-linkable tannic acid(TA)is introduced to modify perovskite film through post-treatment method.The numerous organic functional groups(–OH and C=O)in TA can interact with the uncoordinated Pb^(2+)and I^(-)ions in perovskite,thus passivating defects and inhibiting ions diffusion.In addition,the formed TA network can absorb a small amount of the residual moisture inside the device to protect the perovskite layer.Furthermore,TA modification regulates the energy level of perovskite,and reduces interfacial charge recombination.Ultimately,following TA treatment,the device efficiency is increased significantly from 21.31%to 23.11%,with a decreased hysteresis effect.Notably,the treated device shows excellent air,thermal,and operational stability.In light of this,the readily available,inexpensive TA has the potential to operate as a multipurpose interfacial modifier to increase device efficiency while also enhancing device stability. 展开更多
关键词 Tannic acid Defect passivation lons diffusion HYDROPHILIC STABILITY Perovskite solar cells
下载PDF
Step‑by‑Step Modulation of Crystalline Features and Exciton Kinetics for 19.2%Efficiency Ortho‑Xylene Processed Organic Solar Cells 被引量:1
6
作者 Bosen Zou Weiwei Wu +10 位作者 Top Archie Dela Pena Ruijie Ma Yongmin Luo Yulong Hai Xiyun Xie Mingjie Li Zhenghui Luo Jiaying Wu Chuluo Yang Gang Li He Yan 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第2期258-272,共15页
With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.... With plenty of popular and effective ternary organic solar cells(OSCs)construction strategies proposed and applied,its power conversion efficiencies(PCEs)have come to a new level of over 19%in single-junction devices.However,previous studies are heavily based in chloroform(CF)leaving behind substantial knowledge deficiencies in understanding the influence of solvent choice when introducing a third component.Herein,we present a case where a newly designed asymmetric small molecular acceptor using fluoro-methoxylated end-group modification strategy,named BTP-BO-3FO with enlarged bandgap,brings different morphological evolution and performance improvement effect on host system PM6:BTP-eC9,processed by CF and ortho-xylene(o-XY).With detailed analyses supported by a series of experiments,the best PCE of 19.24%for green solvent-processed OSCs is found to be a fruit of finely tuned crystalline ordering and general aggregation motif,which furthermore nourishes a favorable charge generation and recombination behavior.Likewise,over 19%PCE can be achieved by replacing spin-coating with blade coating for active layer deposition.This work focuses on understanding the commonly met yet frequently ignored issues when building ternary blends to demonstrate cutting-edge device performance,hence,will be instructive to other ternary OSC works in the future. 展开更多
关键词 Organic solar cells Ternary design Solvent selection Flouro-methoxylated end group Morphological ordering
下载PDF
Potential-dependent insights into the origin of high ammonia yield rate on copper surface via nitrate reduction:A computational and experimental study
7
作者 Yangge Guo Nannan Sun +5 位作者 Liuxuan Luo Xiaojing Cheng Xueying Chen Xiaohui Yan Shuiyun Shen Junliang Zhang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第9期272-281,共10页
Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum s... Focusing on revealing the origin of high ammonia yield rate on Cu via nitrate reduction(NO3RR),we herein applied constant potential method via grand-canonical density functional theory(GC-DFT)with implicit continuum solvation model to predict the reaction energetics of NO3RR on pure copper surface in alkaline media.The potential-dependent mechanism on the most prevailing Cu(111)and the minor(100)and(110)facets were established,in consideration of NO_(2)_(−),NO,NH_(3),NH_(2)OH,N_(2),and N_(2)O as the main products.The computational results show that the major Cu(111)is the ideal surface to produce ammonia with the highest onset potential at 0.06 V(until−0.37 V)and the highest optimal potential at−0.31 V for ammonia production without kinetic obstacles in activation energies at critical steps.For other minor facets,the secondary Cu(100)shows activity to ammonia from−0.03 to−0.54 V with the ideal potential at−0.50 V,which requires larger overpotential to overcome kinetic activation energy barriers.The least Cu(110)possesses the longest potential range for ammonia yield from−0.27 to−1.12 V due to the higher adsorption coverage of nitrate,but also with higher tendency to generate di-nitrogen species.Experimental evaluations on commercial Cu/C electrocatalyst validated the accuracy of our proposed mechanism.The most influential(111)surface with highest percentage in electrocatalyst determined the trend of ammonia production.In specific,the onset potential of ammonia production at 0.1 V and emergence of yield rate peak at−0.3 V in experiments precisely located in the predicted potentials on Cu(111).Four critical factors for the high ammonia yield and selectivity on Cu surface via NO3RR are summarized,including high NO3RR activity towards ammonia on the dominant Cu(111)facet,more possibilities to produce ammonia along different pathways on each facet,excellent ability for HER inhibition and suitable surface size to suppress di-nitrogen species formation at high nitrate coverage.Overall,our work provides comprehensive potential-dependent insights into the reaction details of NO3RR to ammonia,which can serve as references for the future development of NO3RR electrocatalysts,achieving higher activity and selectivity by maximizing these characteristics of copper-based materials. 展开更多
关键词 Nitrate reduction to ammonia Copper surface Density functional theory Constant electrode potential method Experimental validation
下载PDF
Heterogeneous Cu_(x)O Nano‑Skeletons from Waste Electronics for Enhanced Glucose Detection
8
作者 Yexin Pan Ruohan Yu +8 位作者 Yalong Jiang Haosong Zhong Qiaoyaxiao Yuan Connie Kong Wai Lee Rongliang Yang Siyu Chen Yi Chen Wing Yan Poon Mitch Guijun Li 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第11期554-568,共15页
Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabrica... Electronic waste(e-waste)and diabetes are global challenges to modern societies.However,solving these two challenges together has been challenging until now.Herein,we propose a laser-induced transfer method to fabricate portable glucose sensors by recycling copper from e-waste.We bring up a laser-induced full-automatic fabrication method for synthesizing continuous heterogeneous Cu_(x)O(h-Cu_(x)O)nano-skeletons electrode for glucose sensing,offering rapid(<1 min),clean,air-compatible,and continuous fabrication,applicable to a wide range of Cu-containing substrates.Leveraging this approach,h-Cu_(x)O nanoskeletons,with an inner core predominantly composed of Cu_(2)O with lower oxygen content,juxtaposed with an outer layer rich in amorphous Cu_(x)O(a-Cu_(x)O)with higher oxygen content,are derived from discarded printed circuit boards.When employed in glucose detection,the h-Cu_(x)O nano-skeletons undergo a structural evolution process,transitioning into rigid Cu_(2)O@CuO nano-skeletons prompted by electrochemical activation.This transformation yields exceptional glucose-sensing performance(sensitivity:9.893 mA mM^(-1) cm^(-2);detection limit:0.34μM),outperforming most previously reported glucose sensors.Density functional theory analysis elucidates that the heterogeneous structure facilitates gluconolactone desorption.This glucose detection device has also been downsized to optimize its scalability and portability for convenient integration into people’s everyday lives. 展开更多
关键词 Copper oxide Electron 3D tomography E-WASTE Glucose detection Electrochemical activation
下载PDF
Rational Design of Ruddlesden-Popper Perovskite Ferrites as Air Electrode for Highly Active and Durable Reversible Protonic Ceramic Cells
9
作者 Na Yu Idris Temitope Bello +4 位作者 Xi Chen Tong Liu Zheng Li Yufei Song Meng Ni 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第9期308-324,共17页
Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7... Reversible protonic ceramic cells(RePCCs)hold promise for efficient energy storage,but their practicality is hindered by a lack of high-performance air electrode materials.Ruddlesden-Popper perovskite Sr_(3)Fe_(2)O_(7−δ)(SF)exhibits superior proton uptake and rapid ionic conduction,boosting activity.However,excessive proton uptake during RePCC operation degrades SF’s crystal structure,impacting durability.This study introduces a novel A/B-sites co-substitution strategy for modifying air electrodes,incorporating Sr-deficiency and Nb-substitution to create Sr_(2.8)Fe_(1.8)Nb_(0.2)O_(7−δ)(D-SFN).Nb stabilizes SF’s crystal,curbing excessive phase formation,and Sr-deficiency boosts oxygen vacancy concentration,optimizing oxygen transport.The D-SFN electrode demonstrates outstanding activity and durability,achieving a peak power density of 596 mW cm^(−2)in fuel cell mode and a current density of−1.19 A cm^(−2)in electrolysis mode at 1.3 V,650℃,with excellent cycling durability.This approach holds the potential for advancing robust and efficient air electrodes in RePCCs for renewable energy storage. 展开更多
关键词 Reversible protonic ceramic cells Air electrode Ruddlesden-Popper perovskite HYDRATION Oxygen reduction reaction
下载PDF
TiO_(2)Electron Transport Layer with p-n Homojunctions for Efficient and Stable Perovskite Solar Cells
10
作者 Wenhao Zhao Pengfei Guo +8 位作者 Jiahao Wu Deyou Lin Ning Jia Zhiyu Fang Chong Liu Qian Ye Jijun Zou Yuanyuan Zhou Hongqiang Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第10期1-14,共14页
Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport... Low-temperature processed electron transport layer(ETL)of TiO_(2)that is widely used in planar perovskite solar cells(PSCs)has inherent low carrier mobility,resulting in insufficient photogenerated elec-tron transport and thus recombination loss at buried interface.Herein,we demonstrate an effective strategy of laser embedding of p-n homojunctions in the TiO_(2)ETL to accelerate electron transport in PSCs,through localized build-in electric fields that enables boosted electron mobility by two orders of magnitude.Such embedding is found significantly helpful for not only the enhanced crystallization quality of TiO_(2)ETL,but the fabrication of perovskite films with larger-grain and the less-trap-states.The embedded p-n homojunction enables also the modulation of interfacial energy level between perovskite layers and ETLs,favoring for the reduced voltage deficit of PSCs.Benefiting from these merits,the formamidinium lead iodide(FAPbI_(3))PSCs employing such ETLs deliver a champion efficiency of 25.50%,along with much-improved device stability under harsh conditions,i.e.,maintain over 95%of their initial efficiency after operation at maximum power point under continuous heat and illumination for 500 h,as well as mixed-cation PSCs with a champion efficiency of 22.02%and over 3000 h of ambient storage under humidity stability of 40%.Present study offers new possibilities of regulating charge transport layers via p-n homojunction embedding for high performance optoelectronics. 展开更多
关键词 Electron transport layer p-n homojunction Electron mobility Buried interface Perovskite solar cells
下载PDF
Efficient C-N coupling in electrocatalytic urea generation on copper carbonate hydroxide electrocatalysts
11
作者 Yinuo Wang Yian Wang +11 位作者 Qinglan Zhao Hongming Xu Shangqian Zhu Fei Yang Ernest P.Delmo Xiaoyi Qiu Chi Song Juhee Jang Tiehuai Li Ping Gao MDanny Gu Minhua Shao 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期289-298,I0008,共11页
Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)... Urea generation through electrochemical CO_(2) and NO_(3)~-co-reduction reaction(CO_(2)NO_(3)RR)is still limited by either the low selectivity or yield rate of urea.Herein,we report copper carbonate hydroxide(Cu_2(OH)_2CO_(3))as an efficient CO_(2)NO_(3)RR electrocatalyst with an impressive urea Faradaic efficiency of45.2%±2.1%and a high yield rate of 1564.5±145.2μg h~(-1)mg_(cat)~(-1).More importantly,H_(2) evolution is fully inhibited on this electrocatalyst over a wide potential range between-0.3 and-0.8 V versus reversible hydrogen electrode.Our thermodynamic simulation reveals that the first C-N coupling follows a unique pathway on Cu_2(OH)_2CO_(3) by combining the two intermediates,~*COOH and~*NHO.This work demonstrates that high selectivity and yield rate of urea can be simultaneously achieved on simple Cu-based electrocatalysts in CO_(2)NO_(3)RR,and provide guidance for rational design of more advanced catalysts. 展开更多
关键词 Copper carbonate hydroxide Co-reduction Urea generation C-N coupling DFT calculation
下载PDF
糖尿病患者足溃疡减压指南(2023年更新版)——《国际糖尿病足工作组:糖尿病相关的足病预防与管理指南(2023)》的一部分
12
作者 Sicco A.Bus David G.Armstrong +12 位作者 Ryan T.Crews Catherine Gooday Gustav Jarl Klaus Kirketerp-Moller Vijay Viswanathan Peter A.Lazzarini on behalf of the International Working Group on the Diabetic Foot 陈燕 刘斌 张晓诗 邓武权(译) 王爱萍 许樟荣(审校) 《感染、炎症、修复》 2024年第1期1-22,共22页
减轻组织的机械性压力在治愈糖尿病相关的足溃疡所需的多种干预措施中最为重要。本文是2023年国际糖尿病足工作组(IWGDF)发布的减压治疗促进糖尿病相关的足溃疡愈合的循证指南,也是对2019年IWGDF指南的更新。我们遵循推荐、评估、发展... 减轻组织的机械性压力在治愈糖尿病相关的足溃疡所需的多种干预措施中最为重要。本文是2023年国际糖尿病足工作组(IWGDF)发布的减压治疗促进糖尿病相关的足溃疡愈合的循证指南,也是对2019年IWGDF指南的更新。我们遵循推荐、评估、发展和评价分级(GRADE)方法学,以患者-干预-比较-结局(patient-intervention-control-outcome,PICO)模式设计临床问题和重要结果,进行系统评价和Meta分析,制定评判表汇总,为每个问题编写推荐和理由。每项推荐都是基于系统综述中发现的证据,在无证据情况下则采用专家意见,以及对判断项目的GRADE等级总结进行仔细权衡,包括可预期和不可预期的影响、证据的确定性、患者价值、所需资源、成本效益、公平性、可行性和可接受性。为了治愈糖尿病患者神经性前足底或中足底溃疡,要使用不可拆卸的齐膝高减压装置作为首选减压干预措施。如果患者存在对不可拆卸减压装置的禁忌证或不能耐受,考虑使用可拆卸齐膝(或踝)高减压装置作为减压干预措施的第二选择。如果无可用的减压装置,考虑使用合适的鞋具结合毡制泡沫作为减压干预措施的第三选择。如果这种非手术减压治疗不能治愈前足底溃疡,可以考虑跟腱延长术、跖骨头切除术、关节置换术或跖骨截骨术。为了治疗继发于屈趾畸形的神经性足底或小趾远端溃疡,可行趾屈肌腱切开术。为了促进后足、非足底或并发感染或缺血的溃疡的愈合,提出了进一步的推荐。所有推荐都已在减压临床路径中进行了总结,以帮助促进本指南在临床实践中的实施。这些减压推荐将帮助医务人员为糖尿病相关的足溃疡患者提供最佳的治疗和预后,降低患者感染、住院和截肢的风险。 展开更多
关键词 糖尿病 足溃疡 减压 减压装置 指南 国际糖尿病足工作组
下载PDF
Inkjet-Printing Controlled Phase Evolution Boosts the Efficiency of Hole Transport Material Free and Carbon-Based CsPbBr_(3) Perovskite Solar Cells Exceeding 9%
13
作者 Lihua Zhang Shi Chen +7 位作者 Jie Zeng Zhengyan Jiang Qian Ai Xianfu Zhang Bihua Hu Xingzhu Wang Shihe Yang Baomin Xu 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2024年第2期209-220,共12页
Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the ... Hole transport material free carbon-based all-inorganic CsPbBr_(3)perovskite solar cells(PSCs)are promising for commercialization due to its low-cost,high open-circuit voltage(V_(oc))and superior stability.Due to the different solubility of PbBr_(2)and CsBr in conventional solvents,CsPbBr_(3)films are mainly obtained by multi-step spin-coating through the phase evolution from PbBr_(2)to CsPb_(2)Br_(5)and then to CsPbBr_(3).The scalable fabrication of high-quality CsPbBr_(3)films has been rarely studied.Herein,an inkjet-printing method is developed to prepare high-quality CsPbBr_(3)films.The formation of long-range crystalline CsPb_(2)Br_(5)phase can effectively improve phase purity and promote regular crystal stacking of CsPbBr_(3).Consequently,the inkjet-printed CsPbBr_(3)C-PSCs realized PCEs up to 9.09%,8.59%and 7.81%with active areas of 0.09,0.25,and 1 cm^(2),respectively,demonstrating the upscaling potential of our fabrication method and devices.This high performance is mainly ascribed to the high purity,strong crystal orientation,reduced surface roughness and lower trap states density of the as-printed CsPbBr_(3)films.This work provides insights into the relationship between the phase evolution mechanisms and crystal growth dynamics of cesium lead bromide halide films. 展开更多
关键词 all-inorganic perovskite solar cells CsPbBr_(3) inkjet-printing phase evolution
下载PDF
Low-temperature conformal vacuum deposition of OLED devices using close-space sublimation 被引量:2
14
作者 Bryan Siu Ting Tam Shou-Cheng Dong Ching W.Tang 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期62-67,共6页
Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films... Close-space sublimation(CSS)has been demonstrated as an alternative vacuum deposition technique for fabricating organic light-emitting diodes(OLEDs).CSS utilizes a planar donor plate pre-coated with organic thin films as an area source to rapidly transfer the donor film to a device substrate at temperatures below 200℃.CSS is also conformal and capable of depositing on odd-shaped substrates using flexible donor media.The evaporation behaviors of organic donor films under CSS were fully characterized using model OLED materials and CSS-deposited films exhibited comparable device performances in an OLED stack to films deposited by conventional point sources.The low temperature and conformal nature of CSS,along with its high material utilization and short process time,make it a promising method for fabricating flexible OLED displays. 展开更多
关键词 close-space sublimation OLED thin film low temperature vacuum deposition
下载PDF
High‑Quality Epitaxial N Doped Graphene on SiC with Tunable Interfacial Interactions via Electron/Ion Bridges for Stable Lithium‑Ion Storage 被引量:2
15
作者 Changlong Sun Xin Xu +5 位作者 Cenlin Gui Fuzhou Chen Yian Wang Shengzhou Chen Minhua Shao Jiahai Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第11期185-204,共20页
Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfac... Tailoring the interfacial interaction in SiCbased anode materials is crucial to the accomplishment of higher energy capacities and longer cycle lives for lithium-ion storage.In this paper,atomic-scale tunable interfacial interaction is achieved by epitaxial growth of high-quality N doped graphene(NG)on SiC(NG@SiC).This well-designed NG@SiC heterojunction demonstrates an intrinsic electric field with intensive interfacial interaction,making it an ideal prototype to thoroughly understand the configurations of electron/ion bridges and the mechanisms of interatomic electron migration.Both density functional theory(DFT)analysis and electrochemical kinetic analysis reveal that these intriguing electron/ion bridges can control and tailor the interfacial interaction via the interfacial coupled chemical bonds,enhancing the interfacial charge transfer kinetics and preventing pulverization/aggregation.As a proof-of-concept study,this well-designed NG@SiC anode shows good reversible capacity(1197.5 mAh g^(−1)after 200 cycles at 0.1 A g^(−1))and cycling durability with 76.6%capacity retention at 447.8 mAh g^(−1)after 1000 cycles at 10.0 A g^(−1).As expected,the lithium-ion full cell(LiFePO_(4)/C//NG@SiC)shows superior rate capability and cycling stability.This interfacial interaction tailoring strategy via epitaxial growth method provides new opportunities for traditional SiC-based anodes to achieve high-performance lithium-ion storage and beyond. 展开更多
关键词 SIC HETEROJUNCTION Interfacial engineering Lithium-ion battery DFT calculation
下载PDF
A dual-mode image sensor using an all-inorganic perovskite nanowire array for standard and neuromorphic imaging 被引量:1
16
作者 Zhenghao Long Yucheng Ding +3 位作者 Xiao Qiu Yu Zhou Shivam Kumar Zhiyong Fan 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期75-82,共8页
The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sens... The high-density,vertically aligned retinal neuron array provides effective vision,a feature we aim to replicate with electronic devices.However,the conventional complementary metal-oxide-semiconductor(CMOS)image sensor,based on separate designs for sensing,memory,and processing units,limits its integration density.Moreover,redundant signal communication significantly increases energy consumption.Current neuromorphic devices integrating sensing and signal processing show promise in various computer vision applications,but there is still a need for frame-based imaging with good compatibility.In this study,we developed a dual-mode image sensor based on a high-density all-inorganic perovskite nanowire array.The device can switch between frame-based standard imaging mode and neuromorphic imaging mode by applying different biases.This unique bias-dependent photo response is based on a well-designed energy band diagram.The biomimetic alignment of nanowires ensures the potential for high-resolution imaging.To further demonstrate the imaging ability,we conducted pattern reconstruction in both modes with a 10×10 crossbar device.This study introduces a novel image sensor with high compatibility and efficiency,suitable for various applications including computer vision,surveillance,and robotics. 展开更多
关键词 MODE IMAGE INORGANIC
下载PDF
Organic-inorganic halide perovskites for memristors 被引量:1
17
作者 Memoona Qammar Bosen Zou Jonathan E.Halpert 《Journal of Semiconductors》 EI CAS CSCD 2023年第9期39-46,共8页
Organic-inorganic halides perovskites(OHPs)have drawn the attention of many researchers owing to their astonishing and unique optoelectronic properties.They have been extensively used for photovoltaic applications,ach... Organic-inorganic halides perovskites(OHPs)have drawn the attention of many researchers owing to their astonishing and unique optoelectronic properties.They have been extensively used for photovoltaic applications,achieving higher than 26%power conversion efficiency to date.These materials have potential to be deployed for many other applications beyond photovoltaics like photodetectors,sensors,light-emitting diodes(LEDs),and resistors.To address the looming challenge of Moore’s law and the Von Neumann bottleneck,many new technologies regarding the computation of architectures and storage of information are being extensively researched.Since the discovery of the memristor as a fourth component of the circuit,many materials are explored for memristive applications.Lately,researchers have advanced the exploration of OHPs for memristive applications.These materials possess promising memristive properties and various kinds of halide perovskites have been used for different applications that are not only limited to data storage but expand towards artificial synapses,and neuromorphic computing.Herein we summarize the recent advancements of OHPs for memristive applications,their unique electronic properties,fabrication of materials,and current progress in this field with some future perspectives and outlooks. 展开更多
关键词 organic-inorganic halide perovskites resistive switching MEMRISTORS
下载PDF
Superior oxygen electrocatalyst derived from metal organic coordination polymers by instantaneous nucleation and epitaxial growth for rechargeable Li-O_(2) battery 被引量:1
18
作者 Dongdong Li Jinbiao Chen +4 位作者 Yingtong Chen Yian Wang Yanpeng Fu Minhua Shao Zhicong Shi 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第3期169-177,I0005,共10页
Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxyge... Rechargeable aprotic Li-O_(2)batteries have attractea increasing attention due to their extremely high capacity,and it is very important to design appropriate strategies to synthesize efficient catalysts used as oxygen cathode.In present work,we present an expedient "instantaneous nucleation and epitaxial growth"(INEG) synthesis strategy for convenient and large-scale synthesis of ultrafine MOCPs nanoparticles(size 50-100 nm) with obvious advantages such as fast synthesis,high yields,low costs and reduced synthetic steps.The bimetallic Ru/Co-MOCPs are further pyrolyzed to obtain bimetallic Coand low content of Ru-based nanoparticles embedded within nitrogen-doped carbon(Ru/Co@N-C) as an efficient catalyst used in Li-O_(2)battery.The Ru/Co@N-C provides porous carbon framework for the ion transportation and O_(2)diffusion,and has large amounts of metal/nonmetal sites as active site to promote the oxygen reduction reaction(ORR)/oxygen evolution reaction(OER) in Li-O_(2)batteries.As a consequence,a high discharge specific capacity of 15246 mA h g^(-1)at 250 mA g^(-1), excellent rate capability at different current densities,and stable overpotential during cycling,are achieved.This work opened up a new understanding for the industrialized synthesis of ultrafine catalysts for Li-O_(2)batteries with excellent structural characteristics and electrochemical performance. 展开更多
关键词 Ultrafine MOCPs Expedient synthesis strategy Derivative Bimetallic sites Rechargeable Li-O_(2)batteries
下载PDF
两步真空蒸馏法从复杂铅锑硫化矿中提取硫化锑 被引量:1
19
作者 李玲 杨勉 +2 位作者 熊恒 王艺曌 杨斌 《Journal of Central South University》 SCIE EI CAS CSCD 2023年第1期132-141,共10页
锑元素具有亲硫性,在矿物中多以硫化物的形式存在。锑最重要的硫化物为Sb2S3,在电池材料、军事工业等领域被广泛应用。随着单一锑硫化矿资源的日益枯竭,复杂铅锑硫化矿成为制备锑金属材料的重要矿物。为实现锑金属的高效提取与利用,本... 锑元素具有亲硫性,在矿物中多以硫化物的形式存在。锑最重要的硫化物为Sb2S3,在电池材料、军事工业等领域被广泛应用。随着单一锑硫化矿资源的日益枯竭,复杂铅锑硫化矿成为制备锑金属材料的重要矿物。为实现锑金属的高效提取与利用,本文采用两步真空蒸馏法从复杂铅锑硫化矿物中获得高纯度Sb2S3,从矿物源头实现锑与其他金属的分离。考察了蒸馏温度、时间对Sb2S3的纯度和锑元素直收率的影响。结果表明,在5 Pa的条件下,矿中的脆硫铅锑矿(Pb4FeSb6S14)在750℃完全分解为PbS,Sb2S3和FeS。在650℃保温80 min,第一步真空蒸馏获得的Sb2S3纯度为99.07 wt%。对第一步得到的残留物在800℃保温40 min,第二步真空蒸馏得到的Sb2S3纯度为99.41 wt%。两步真空蒸馏锑的直收率达到95.84%。真空蒸馏实现了复杂铅锑硫化矿中锑资源的高效利用,获得了纯度99 wt%的Sb2S3,为从含锑矿产资源中直接提取Sb2S3提供了一种有效方法。 展开更多
关键词 两步法 真空蒸馏 铅锑硫化矿 硫化锑 直收率
下载PDF
Surface hydrophobic modification of MXene to promote the electrochemical conversion of N_(2) to NH_(3) 被引量:1
20
作者 Xu Wang Rui Zhang +6 位作者 Chaoqun Ma Wei Yan Yanjiao Wei Jian Tian Min Ma Qing Li Minhua Shao 《Journal of Energy Chemistry》 SCIE EI CSCD 2023年第12期439-449,I0011,共12页
Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified ... Hydrophobic treatment of the catalyst surfaces can suppress the competitive hydrogen evolution reaction(HER) during the nitrogen reduction reaction(NRR).In this work,the surface of Ti_(3)C_(2)Ti_(x) MXene is modified by cetyltrimethylammonium bromide(CTAB) and trimethoxy(3,3,4,4,5,5,6,6,7,7,8,8,8-trideca fluorooctyl) silane(FOTS) to increase the hydrophobicity of MXenes.The ammonia(NH_(3)) production rate and faradaic efficiency(FE) are improved from 37.62 to 54.01 μg h^(-1)mg_(cat)^(-1).and 5.5% to 18.1% at-0.7 V vs.RHE,respectively after surface modification.^(15)N isotopic labeling experiment confirms that nitrogen in produced ammonia originates from N_(2) in the electrolyte.The excellent NRR activity of surface hydrophobic MXenes is mainly due to surfactant molecules,which inhibit the entry of water molecules and the competitive HER,which have been verified by in situ FT-IR,DFT and molecular dynamics calculations.This strategy provides an ingenious method to design more active NRR electrocatalysts. 展开更多
关键词 ELECTROCATALYSIS Nitrogen reduction reaction Surface hydrophobic modification MXene Ti_(3)C_(2)Ti_(x)
下载PDF
上一页 1 2 27 下一页 到第
使用帮助 返回顶部