Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as...Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.展开更多
Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,cau...Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.展开更多
For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological...For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.展开更多
Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of differen...Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.展开更多
Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to underst...Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.展开更多
The Gurbantunggut Desert is the largest stable and semi-stable sand desert in China, yet few data exist on vegetation pattern and species-environment relationships for these diverse desert landscapes. The sand dunes o...The Gurbantunggut Desert is the largest stable and semi-stable sand desert in China, yet few data exist on vegetation pattern and species-environment relationships for these diverse desert landscapes. The sand dunes of the survey area are mainly of the longi- tudinal form from north to south, but checkerboard-shaped and honeycomb-shaped forms are also present, with the height of 10-50 m. We measured vegetation and soil data on north-south transects and compared them with vegetation and soil data on east-west transects. Analysis revealed that the varying trend and strength of the species diversity, dominance and cover of the plant communities in the longitudinal and transverse directions across the landscape are significantly different. The results of CCA ordination show that the microhabitats of soil organic matter (OM), soil salts (TS), sorting index ( σ ), topsoil water-content (SM) and pH relate to the differences in vegetation observed as differences in species assemblage from salt-intolerant ephemerals, micro-subshrubs and subshrubs to salt-tolerant shrubs and micro-arbors. The terrain (alt.) and soil texture (the contents of Mz and Ф 1) affect the spatial differentiation of many species. However, this spatial differentiation is not so marked on transects running longitudinally with the landscape, in the same direction as the dunes. The species of the desert vegetation have formed three assemblages under the action of habitat gradients, relating to three sections running transversely across the landscape, at right angles to the direction of the dune crests. In the mid-east section of the study area the topography is higher, with sand-lands or dune-slopes with coarse particles. Here the dominant vegetation comprises shrubs and subshrubs of Seriphidium santofium and Ephedra distachya, with large numbers of ephemeral and ephemeroid plants of Senecio subdentatus, and Carex physodes in spring and summer. On the soil of the dune-slopes in the mid-west of the study area, with coarse particles and abundant TK, the plant assemblage of Haloxylon persicum, Soranthus meyeri and Agriophyllum squarrosum is developed. The species composition in the east marginal belt of the study area has similar characteristics to the mid-west section. There is no corresponding section in the north-south transects (except for the north and south margins). This is because the habitats of most plants are located in the middle of the microhabitat gradients in the north-south direction in the desert.展开更多
Climate change is having a considerable impact on the availability of water resources for agricultural production on the North China Plain (NCP), where the shortage of water is currently disturbing the stability and...Climate change is having a considerable impact on the availability of water resources for agricultural production on the North China Plain (NCP), where the shortage of water is currently disturbing the stability and sustainability of agricultural production with respect to the drying tendency since the 1950s. However, although potential evapotranspiration (ET) has shown a decreasing trend under climate change, actual ET has slightly increased with an acceleration in hydrological cycling. Global climate model (GCM) ensemble projections predict that by the 2050s, the increased crop water demand and intensified ET resulting from global warming will reduce water resources surplus (Precipitation-ET) about 4%-24% and increase significantly the irrigation water demand in crop growth periods. This study assesses possible mitigation and adaptation measures for enabling agricultural sustainability. It is revealed that reducing the sowing area of winter wheat (3.0%-15.9%) in water-limited basins, together with improvement in crop water-use efficiency would effectively mitigate water shortages and intensify the resilience of agricultural systems to climate change.展开更多
Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved different...Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved differently in various regions,the evolutionary process of tidal creeks in the Huanghe(Yellow)River delta of China,one of the most active deltas worldwide,is not entirely clear.Therefore,the evolution of tidal creeks in the delta from 1981 to 2021 was investigated by quantitatively analysing the tidal creeks and developing a standard for dividing their evolution periods.Visual interpretation and supervised classification methods were applied to the Landsat images to extract the tidal creek network,and 17 groups of tidal creek systems were selected.Results indicate that Creek S 1 was the most developed creek for having 113 tidal creeks totaling 65.8 km in length,while Creek E 3 had the fastest growth rate for having average annual increase of 1.9 km.Meanwhile,the level of tidal creeks increased,the average and median lengths of tidal creeks increased,and the number of tidal creeks decreased since 1981.The evolution of the tidal creek system could be divided into four stages,namely,rising,developing,stabilizing,and degrading.Analyses of a representative tidal creek show that there was no degenerated tidal creek during the rising period,with an increase in the number of 50 and a length increase of 57.9 km between 1981 and 1989.The proportion of new tidal creeks in the developing period was more than 50%and the new tidal creeks in the stabilizing period were equal to the degraded tidal creeks.Extinct tidal creeks were greater than 50%during the degrading period.There was no fixed order of tidal creek evolution in each period,and there may be a skip in evolution.Our findings provided a reference for studying the evolution of tidal creeks.展开更多
Capturing leaf color variances over space is important for diagnosing plant nutrient and health status,estimating water availability as well as improving ornamental and tourism values of plants.In this study,leaf colo...Capturing leaf color variances over space is important for diagnosing plant nutrient and health status,estimating water availability as well as improving ornamental and tourism values of plants.In this study,leaf color variances of the Eurasian smoke tree,Cotinus coggygria were estimated based on geographic and climate variables in a shrub community using generalized elastic net(GELnet)and support vector machine(SVM)algorithms.Results reveal that leaf color varied over space,and the variances were the result of geography due to its effect on solar radiation,temperature,illumination and moisture of the shrub environment,whereas the influence of climate were not obvious.The SVM and GELnet algorithm models were similar estimating leaf color indices based on geographic variables,and demonstrates that both techniques have the potential to estimate leaf color variances of C.coggygria in a shrubbery with a complex geographical environment in the absence of human activity.展开更多
Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predi...Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.展开更多
We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator inv...Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.展开更多
Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how ...Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.展开更多
Urban vegetation in China has changed substantially in recent decades due to rapid urbanization and dramatic climate change.Nevertheless,the spatial differentiation of greenness among major cities of China and its evo...Urban vegetation in China has changed substantially in recent decades due to rapid urbanization and dramatic climate change.Nevertheless,the spatial differentiation of greenness among major cities of China and its evolution process and drivers are still poorly understood.This study examined the spatial patterns of vegetation greenness across 289 cities in China in 2000,2005,2010,2015,and 2018 by using spatial autocorrelation analysis on the Normalized Difference Vegetation Index(NDVI);then,the influencing factors were analyzed by using the optimal parameters-based geographical detector(OPGD)model and 18 natural and anthropogenic indicators.The findings demonstrated a noticeable rise in the overall greenness of the selected cities during 2000-2018.The cities in northwest China and east China exhibited the rapidest and slowest greening,respectively,among the six sub-regions.A significant positive spatial correlation was detected between the greenness of the 289 cities in different periods,but the correlation strength weakened over time.The hot and very hot spots in southern and eastern China gradually shifted to the southwest.While the spatial pattern of urban greenness in China is primarily influenced by wind speed(WS)and precipitation(PRE),the interaction between PRE and gross domestic product(GDP)has the highest explanatory power.The explanatory power of most natural factors decreased and,conversely,the influence of anthropogenic factors generally increased.These findings emphasize the variations in the influence strength of multiple factors on urban greenness pattern,which should be taken into account to understand and adapt to the changing urban ecosystem.展开更多
Equal access to education has long been a global concern and is important for rural revitalization strategy in the new era. However, little is known about the regional differences of educational resources in China, es...Equal access to education has long been a global concern and is important for rural revitalization strategy in the new era. However, little is known about the regional differences of educational resources in China, especially southwest China, where the spatial heterogeneity of human and physical geography is extremely significant. Using a dataset of primary and secondary schools of southwest China at county level in 2015, this study builds an index system to comprehensively measure the supply of educational resources, investigates the spatial pattern of educational resources via exploratory spatial data analysis(ESDA), and explores its influence factors through spatial econometrics. Results indicated that the supply level of educational resources in southwest China was relatively low;the high-high clusters of the supply of educational resources were mainly located in Sichuan Basin and the east of Western Sichuan Plateau, while the concentrated poverty-stricken areas of Guizhou and the border areas of Yunnan-SichuanGuizhou, especially Wumeng mountain area, were characterized by the low-low clusters. Furthermore, this study suggested that altitude, population density, local government revenue and rural residents' income were positively correlated with the supply of educational resources, while the negative influenceswere exerted by proportion of ethnic minority population and urbanization rate. And there were differences in the specific objects of actions of each factor. Ultimately, we proposed that village relocation and combination, as well as sustainable urbanization and regional development were practical paths to optimize the supply of educational resources in rural areas, thus promoting the modernization of agriculture and countryside.展开更多
This paper described a new method for the trace determination of fenpropathrin, cyhalothrin and deltamethrin using multiwalled carbon nanotubes (MWCNTs) cartridge. Important parameters, such as the sample pH, eluent...This paper described a new method for the trace determination of fenpropathrin, cyhalothrin and deltamethrin using multiwalled carbon nanotubes (MWCNTs) cartridge. Important parameters, such as the sample pH, eluent and its volume, sample flow rate and sample volume were investigated in detail. The linear ranges, the detection limits, and precisions (R.S.D.) were in the range of 0.1- 40 μg L^-11, 1.34.3 ng L^-1 and 2.3-2.8%, respectively. The performance of the proposed method was validated with real water samples, and the spiked recoveries were in the range of 91.7-117.8%, respectively. The experimental results demonstrated that the proposed method was an excellent alternative for the routine analysis of such pollutants in environmental samples. 2007 Qing Xiang Zhou. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.展开更多
Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exerting a pronounced impact on global ecosystem services.With the rapid development of industry and agri...Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exerting a pronounced impact on global ecosystem services.With the rapid development of industry and agriculture and the swift expansion of urban areas in China since the 1980s,reactive nitrogen(Nr)emissions and N deposition have substantially increased.In pursuit of im-proving air quality,China has implemented a series of environmental protection policies and undertaken diverse measures to reduce pol-lutant emissions.This paper is a review of multivariate data sources of atmospheric N deposition based on the results of literature from 1980 to 2023,and the original data from 1980 to 2020 are summarized,counted and calculated.The main findings are as follows:1)the annual average atmospheric N deposition ranged from approximately 20-40 kg/(ha·yr),with the variability primarily linked to different assessment methods;2)regional disparities were evident in the spatial distribution of N deposition,with elevated values concentrated in areas with intense Nr emissions;3)atmospheric N deposition significantly declined after 2010,particularly the deposition of oxidized N,while reduced N deposition remained stable.These results reflect the effects of China's serious control policies on nitrogen oxide(NO.)emissions and strengthen the importance of agricultural NH3 emission mitigation.This study contributes to a comprehensive understanding of the N dynamics in the emission-deposition process,and provides a scientific foundation for the research of environmental protection,climate change,and sustainable development.展开更多
Gallium isotope is a potential geochemical tool for understanding planetary processes,environmental pollution,and ore deposit formation.The reported Ga isotope compositions(δ^(71)Ga NIST994 values)of some internation...Gallium isotope is a potential geochemical tool for understanding planetary processes,environmental pollution,and ore deposit formation.The reported Ga isotope compositions(δ^(71)Ga NIST994 values)of some international geological standards,such as BCR-2 and BHVO-2 basalts,exhibit inconsistencies between diff erent laboratories.During mass spectrometry analysis,we found thatδ^(71)Ga NIST994 values of geological standards with or without the correction of the interference of^(138)Ba^(2+)(mass/charge ratio=69)on 69 Ga show signifi cant isotope off sets,and thus effi cient separation of Ba and correcting the interference of^(138)Ba^(2+)are both crucial to obtain accurateδ^(71)Ga values.By comparingδ^(71)Ga NIST994 values(relative to NIST SRM 994 Ga)of the same geostandards from diff erent laboratories,we suggest that the isotopic heterogeneity from NIST SRM 994 Ga is one of the key reasons for the inconsistencies inδ^(71)Ga NIST994 values of BCR-2 and BHVO-2.To facilitate inter-laboratory comparisons,we measured the Ga isotopic compositions of 11 geological reference materials(including Pb-Zn ore,bauxite,igneous rocks,and loess)and two Ga solution standards(NIST SRM 3119a and Alfa Aesar).Theδ^(71)Ga NIST994 andδ^(71)Ga IPGP values of these reference materials vary from 1.12‰to 2.63‰and−0.13‰to 1.38‰,respectively,and can be used to evaluate the precision and accuracy of Ga isotope data from diff erent laboratories.展开更多
Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized add...Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.展开更多
In the present study,an indoor potting experiment was conducted to study the effects of enhanced UV-B radiation and Magnaporthe oryzae on the growth,stomatal structure,photosynthesis,and endogenous hormone contents of...In the present study,an indoor potting experiment was conducted to study the effects of enhanced UV-B radiation and Magnaporthe oryzae on the growth,stomatal structure,photosynthesis,and endogenous hormone contents of a traditional rice cultivar Baijiaolaojing in the Yuanyang terraces of Yunnan Province.In addition,the relationships between these parameters and disease indices were analyzed.We aimed to clarify the response of the photosynthetic physiology of rice under the combined stress of UV-B radiation and M.oryzae.Compared with the M.oryzae infection treatment,all the treatments,including M.oryzae infection before(MBR),simultaneously with(MSR),and after(MAR)UV-B radiation significantly increased the rice height and biomass by 4%–11%and 30%–111%,respectively,and the stomatal structure and carotenoids content of leaves,while decreasing the contents of chlorophyll a and b,by 21%–41%and 63%–73%,respectively.Both the MSR and MBR treatments significantly increased the photosynthetic rate and transpiration rate of rice leaves.The MAR treatment weakened chlorophyll fluorescence parameters,including the actual photosystem II(PS II)photochemical efficiency,electron transport rate,photochemical quenching,and nonphotochemical quenching by 40%,39%,43%,and 24%,respectively.Moreover,the treatments of MAR,MSR,and MBR decreased the phytohormones content and the M.oryzae disease index by 27%–62%in rice leaves.Thus,the enhanced UV-B radiation contributed to suppressing the M.oryzae infection and alleviating its damage to the photosynthesis of rice leaves.This study is valuable for the control of rice blast fungus and offers important insights into plant pathology.展开更多
基金Under the auspices of the National Natural Science Foundation of China(No.42271279,41931293,41801175)。
文摘Quantitatively assessing the carrying capacity of water and land resources systems in arid and semi-arid areas is crucial for achieving the 2030 Sustainable Development Goals.In this work,taking Yulin City in China as a case study and employing the Criteria Importance Through Intercriteria Correlation(CRITIC)method,a modified model of coupling degree was developed to evaluate the car-rying capacity of water and land resources systems endowment and utilization,as well as their coupling coordination degree from 2013 to 2020.Our findings indicate that the water and land resources of Yulin are diminishing due to declines in agriculture,higher industrial water use,and wetland shrinkage.However,reallocating domestic water for ecological sustainability and reducing sloping farmland can mitigate this trend of decline.Temporally,as the coupling coordination between water and land resources system endowment in Yulin continuously improved,the coupling coordination between water and land resources system utilization first decreased and then in-creased with 2016 as the turning point.Spatially,the carrying capacity of water and land resources systems,the coupling coordination degree between water and land resources system endowment,and the coupling coordination degree between water and land resources system utilization in Yulin exhibited the same pattern of being higher in the six northern counties than in the six southern counties.Improving the water resources endowment is vital for the highly efficient use of water and land resources.
基金the Xinjiang Science and Technology Support Project Plan(2022E02026)the Xinjiang Agricultural University Graduate Research and Innovation Programme(XJAUGRI2023049).
文摘Human activities lead to the accumulation of a large amount of nitrogen and phosphorus in sediments in rivers.Simultaneously,nitrogen and phosphorus can be affected by environment and re-enter the upper water body,causing secondary pollution of the river water.In this study,laboratory simulation experiments were conducted initially to investigate the release of nitrogen and phosphorus from river sediments in Urumqi City and the surrounding areas in Xinjiang Uygur Autonomous Region of China and determine the factors that influence their release.The results of this study showed significant short-term differences in nitrogen and phosphorus release characteristics from sediments at different sampling points.The proposed secondary kinetics model(i.e.,pseudo-second-order kinetics model)better fitted the release process of sediment nitrogen and phosphorus.The release of nitrogen and phosphorus from sediments is a complex process driven by multiple factors,therefore,we tested the influence of three factors(pH,temperature,and disturbance intensity)on the release of nitrogen and phosphorus from sediments in this study.The most amount of nitrate nitrogen(NO_(3)^(–)-N)was released under neutral conditions,while the most significant release of ammonia nitrogen(NH_(4)^(+)-N)occurred under acidic and alkaline conditions.The release of nitrite nitrogen(NO_(2)^(-)-N)was less affected by pH.The dissolved total phosphorus(DTP)released significantly in the alkaline water environment,while the release of dissolved organic phosphorus(DOP)was more significant in acidic water.The release amount of soluble reactive phosphorus(SRP)increased with an increase in pH.The sediments released nitrogen and phosphorus at higher temperatures,particularly NH_(4)^(+)-N,NO_(3)^(–)-N,and SRP.The highest amount of DOP was released at 15.0℃.An increase in disturbance intensity exacerbated the release of nitrogen and phosphorus from sediments.NH_(4)^(+)-N,DTP,and SRP levels increased linearly with the intensity of disturbance,while NO_(3)^(–)-N and NO_(2)^(–)-N were more stable.This study provides valuable information for protecting and restoring the water environment in arid areas and has significant practical reference value.
基金supported by the Guangxi Natural Science Foundation(2020GXNSFAA297266)Doctoral Research Foundation of Guilin University of Technology(GUTQDJJ2007059)Guangxi Hidden Metallic Mineral Exploration Key Laboratory。
文摘For regional ecological management,it is important to evaluate the quality of ecosystems and analyze the underlying causes of ecological changes.Using the Google Earth Engine(GEE)platform,the remote sensing ecological index(RSEI)was calculated for the Lijiang River Basin in Guangxi Zhuang Autonomous Region for 1991,2001,2011,and 2021.Spatial autocorrelation analysis was employed to investigate spatiotemporal variations in the ecological environmental quality of the Lijiang River Basin.Furthermore,geographic detectors were used to quantitatively analyze influencing factors and their interaction effects on ecological environmental quality.The results verified that:1)From 1991 to 2021,the ecological environmental quality of the Lijiang River Basin demonstrated significant improvement.The area with good and excellent ecological environmental quality in proportion increased by 19.69%(3406.57 km^(2)),while the area with fair and poor ecological environmental quality in proportion decreased by 10.76%(1860.36 km^(2)).2)Spatially,the ecological environmental quality of the Lijiang River Basin exhibited a pattern of low quality in the central region and high quality in the periphery.Specifically,poor ecological environmental quality characterized the Guilin urban area,Pingle County,and Lingchuan County.3)From 1991 to 2021,a significant positive spatial correlation was observed in ecological environmental quality of the Lijiang River Basin.Areas with high-high agglomeration were predominantly forests and grasslands,indicating good ecological environmental quality,whereas areas with low-low agglomeration were dominated by cultivated land and construction land,indicating poor ecological environmental quality.4)Annual average precipitation and temperature exerted the most significant influence on the ecological environmental quality of the basin,and their interactions with other factors had the great influence.This study aimed to enhance understanding of the evolution of the ecological environment in the Lijiang River Basin of Guangxi Zhuang Autonomous Region and provide scientific guidance for decision-making and management related to ecology in the region.
基金supported by the earmarked fund for China Agriculture Research System(CARS-23-B04)the National Key Research and Development Program of China(2016YFD0201001)HAAFS Science and Technology Innovation Special Project,China(2022KJCXZX-ZHS-2).
文摘Partial substitution of inorganic fertilizers with organic amendments is an important agricultural management practice.An 11-year field experiment(22 cropping periods)was carried out to analyze the impacts of different partial substitution treatments on crop yields and the transformation of nitrogen fractions in greenhouse vegetable soil.Four treatments with equal N,P_(2)O_(5),and K_(2)O inputs were selected,including complete inorganic fertilizer N(CN),50%inorganic fertilizer N plus 50%pig manure N(CPN),50%inorganic fertilizer N plus 25%pig manure N and 25%corn straw N(CPSN),and 50%inorganic fertilizer N plus 50%corn straw N(CSN).Organic substitution treatments tended to increase crop yields since the 6th cropping period compared to the CN treatment.From the 8th to the 22nd cropping periods,the highest yields were observed in the CPSN treatment where yields were 7.5-11.1%greater than in CN treatment.After 11-year fertilization,compared to CN,organic substitution treatments significantly increased the concentrations of NO_(3)^(-)-N,NH_(4)^(+)-N,acid hydrolysis ammonium-N(AHAN),amino acid-N(AAN),amino sugar-N(ASN),and acid hydrolysis unknown-N(AHUN)in soil by 45.0-69.4,32.8-58.1,49.3-66.6,62.0-69.5,34.5-100.3,and 109.2-172.9%,respectively.Redundancy analysis indicated that soil C/N and OC concentration significantly affected the distribution of N fractions.The highest concentrations of NO_(3)^(-)-N,AHAN,AAN,AHUN were found in the CPSN treatment.Organic substitution treatments increased the activities ofβ-glucosidase,β-cellobiosidase,N-acetyl-glucosamidase,L-aminopeptidase,and phosphatase in the soil.Organic substitution treatments reduced vector length and increased vector angle,indicating alleviation of constraints of C and N on soil microorganisms.Organic substitution treatments increased the total concentrations of phospholipid fatty acids(PLFAs)in the soil by 109.9-205.3%,and increased the relative abundance of G^(+)bacteria and fungi taxa,but decreased the relative abundance of G-bacteria,total bacteria,and actinomycetes.Overall,long-term organic substitution management increased soil OC concentration,C/N,and the microbial population,the latter in turn positively influenced soil enzyme activity.Enhanced microorganism numbers and enzyme activity enhanced soil N sequestration by transforming inorganic N to acid hydrolysis-N(AHN),and enhanced soil N supply capacity by activating non-acid hydrolysis-N(NAHN)to AHN,thus improving vegetable yield.Application of inorganic fertilizer,manure,and straw was a more effective fertilization model for achieving sustainable greenhouse vegetable production than application of inorganic fertilizer alone.
基金the National Key Research and Development Program of China(2017YFD0800102)the Hubei Provincial Key Research and Development Program,China(2021BCA156)。
文摘Dynamic nitrification and denitrification processes are affected by changes in soil redox conditions,and they play a vital role in regulating soil N_(2)O emissions in rice-based cultivation.It is imperative to understand the influences of different upland crop planting systems on soil N_(2)O emissions.In this study,we focused on two representative rotation systems in Central China:rapeseed–rice(RR)and wheat–rice(WR).We examined the biotic and abiotic processes underlying the impacts of these upland plantings on soil N_(2)O emissions.The results revealed that during the rapeseed-cultivated seasons in the RR rotation system,the average N_(2)O emissions were 1.24±0.20 and 0.81±0.11 kg N ha^(–1)for the first and second seasons,respectively.These values were comparable to the N_(2)O emissions observed during the first and second wheat-cultivated seasons in the WR rotation system(0.98±0.25 and 0.70±0.04 kg N ha^(–1),respectively).This suggests that upland cultivation has minimal impacts on soil N_(2)O emissions in the two rotation systems.Strong positive correlations were found between N_(2)O fluxes and soil ammonium(NH_(4)^(+)),nitrate(NO_(3)^(–)),microbial biomass nitrogen(MBN),and the ratio of soil dissolved organic carbon(DOC)to NO_(3)^(–)in both RR and WR rotation systems.Moreover,the presence of the AOA-amoA and nirK genes were positively associated with soil N_(2)O fluxes in the RR and WR systems,respectively.This implies that these genes may have different potential roles in facilitating microbial N_(2)O production in various upland plantation models.By using a structural equation model,we found that soil moisture,mineral N,MBN,and the AOA-amoA gene accounted for over 50%of the effects on N_(2)O emissions in the RR rotation system.In the WR rotation system,soil moisture,mineral N,MBN,and the AOA-amoA and nirK genes had a combined impact of over 70%on N_(2)O emissions.These findings demonstrate the interactive effects of functional genes and soil factors,including soil physical characteristics,available carbon and nitrogen,and their ratio,on soil N_(2)O emissions during upland cultivation seasons under rice-upland rotations.
基金Fund from the Forestry Bureau of Fukang CityThe Director's Fund of the Xinjiang Institute of Ecology and Geology,CAS
文摘The Gurbantunggut Desert is the largest stable and semi-stable sand desert in China, yet few data exist on vegetation pattern and species-environment relationships for these diverse desert landscapes. The sand dunes of the survey area are mainly of the longi- tudinal form from north to south, but checkerboard-shaped and honeycomb-shaped forms are also present, with the height of 10-50 m. We measured vegetation and soil data on north-south transects and compared them with vegetation and soil data on east-west transects. Analysis revealed that the varying trend and strength of the species diversity, dominance and cover of the plant communities in the longitudinal and transverse directions across the landscape are significantly different. The results of CCA ordination show that the microhabitats of soil organic matter (OM), soil salts (TS), sorting index ( σ ), topsoil water-content (SM) and pH relate to the differences in vegetation observed as differences in species assemblage from salt-intolerant ephemerals, micro-subshrubs and subshrubs to salt-tolerant shrubs and micro-arbors. The terrain (alt.) and soil texture (the contents of Mz and Ф 1) affect the spatial differentiation of many species. However, this spatial differentiation is not so marked on transects running longitudinally with the landscape, in the same direction as the dunes. The species of the desert vegetation have formed three assemblages under the action of habitat gradients, relating to three sections running transversely across the landscape, at right angles to the direction of the dune crests. In the mid-east section of the study area the topography is higher, with sand-lands or dune-slopes with coarse particles. Here the dominant vegetation comprises shrubs and subshrubs of Seriphidium santofium and Ephedra distachya, with large numbers of ephemeral and ephemeroid plants of Senecio subdentatus, and Carex physodes in spring and summer. On the soil of the dune-slopes in the mid-west of the study area, with coarse particles and abundant TK, the plant assemblage of Haloxylon persicum, Soranthus meyeri and Agriophyllum squarrosum is developed. The species composition in the east marginal belt of the study area has similar characteristics to the mid-west section. There is no corresponding section in the north-south transects (except for the north and south margins). This is because the habitats of most plants are located in the middle of the microhabitat gradients in the north-south direction in the desert.
基金Acknowledgment This work was supported by the State's Key Project of Research and Development Plan (2010CB428404) and the Natural Science Foundation of China (41471026).
文摘Climate change is having a considerable impact on the availability of water resources for agricultural production on the North China Plain (NCP), where the shortage of water is currently disturbing the stability and sustainability of agricultural production with respect to the drying tendency since the 1950s. However, although potential evapotranspiration (ET) has shown a decreasing trend under climate change, actual ET has slightly increased with an acceleration in hydrological cycling. Global climate model (GCM) ensemble projections predict that by the 2050s, the increased crop water demand and intensified ET resulting from global warming will reduce water resources surplus (Precipitation-ET) about 4%-24% and increase significantly the irrigation water demand in crop growth periods. This study assesses possible mitigation and adaptation measures for enabling agricultural sustainability. It is revealed that reducing the sowing area of winter wheat (3.0%-15.9%) in water-limited basins, together with improvement in crop water-use efficiency would effectively mitigate water shortages and intensify the resilience of agricultural systems to climate change.
基金Supported by the Natural Science Foundation of Shandong Province(No.ZR2021ME167)the Key Research and Development Program of Shandong Province(No.2022CXGC010401)。
文摘Coastal tidal creeks are important channels for exchanges of material and energy between sea and land,and play an important role in the ecological protection of tidal flats.Although tidal creeks have evolved differently in various regions,the evolutionary process of tidal creeks in the Huanghe(Yellow)River delta of China,one of the most active deltas worldwide,is not entirely clear.Therefore,the evolution of tidal creeks in the delta from 1981 to 2021 was investigated by quantitatively analysing the tidal creeks and developing a standard for dividing their evolution periods.Visual interpretation and supervised classification methods were applied to the Landsat images to extract the tidal creek network,and 17 groups of tidal creek systems were selected.Results indicate that Creek S 1 was the most developed creek for having 113 tidal creeks totaling 65.8 km in length,while Creek E 3 had the fastest growth rate for having average annual increase of 1.9 km.Meanwhile,the level of tidal creeks increased,the average and median lengths of tidal creeks increased,and the number of tidal creeks decreased since 1981.The evolution of the tidal creek system could be divided into four stages,namely,rising,developing,stabilizing,and degrading.Analyses of a representative tidal creek show that there was no degenerated tidal creek during the rising period,with an increase in the number of 50 and a length increase of 57.9 km between 1981 and 1989.The proportion of new tidal creeks in the developing period was more than 50%and the new tidal creeks in the stabilizing period were equal to the degraded tidal creeks.Extinct tidal creeks were greater than 50%during the degrading period.There was no fixed order of tidal creek evolution in each period,and there may be a skip in evolution.Our findings provided a reference for studying the evolution of tidal creeks.
基金supported by the Fundamental Research Funds for the Central Universities(Grant No.XDJK2019D041)the Research Innovation Programs for graduate student of Chongqing,China(Grant No.CYS19123)the National Undergraduate Innovation and Entrepreneurship Training Programs(Grant No.201810635015).
文摘Capturing leaf color variances over space is important for diagnosing plant nutrient and health status,estimating water availability as well as improving ornamental and tourism values of plants.In this study,leaf color variances of the Eurasian smoke tree,Cotinus coggygria were estimated based on geographic and climate variables in a shrub community using generalized elastic net(GELnet)and support vector machine(SVM)algorithms.Results reveal that leaf color varied over space,and the variances were the result of geography due to its effect on solar radiation,temperature,illumination and moisture of the shrub environment,whereas the influence of climate were not obvious.The SVM and GELnet algorithm models were similar estimating leaf color indices based on geographic variables,and demonstrates that both techniques have the potential to estimate leaf color variances of C.coggygria in a shrubbery with a complex geographical environment in the absence of human activity.
基金supported by the National Natural Science Foundation of China(31201168)the Basic Research Program of Shanxi Province,China(20210302123411)the earmarked fund for Modern Agro-industry Technology Research System,China(2022-07).
文摘Determining the suitable areas for winter wheat under climate change and assessing the risk of freezing injury are crucial for the cultivation of winter wheat.We used an optimized Maximum Entropy(MaxEnt)Model to predict the potential distribution of winter wheat in the current period(1970-2020)and the future period(2021-2100)under four shared socioeconomic pathway scenarios(SSPs).We applied statistical downscaling methods to downscale future climate data,established a scientific and practical freezing injury index(FII)by considering the growth period of winter wheat,and analyzed the characteristics of abrupt changes in winter wheat freezing injury by using the Mann-Kendall(M-K)test.The results showed that the prediction accuracy AUC value of the MaxEnt Model reached 0.976.The minimum temperature in the coldest month,precipitation in the wettest season and annual precipitation were the main factors affecting the spatial distribution of winter wheat.The total suitable area of winter wheat was approximately 4.40×10^(7)ha in the current period.In the 2070s,the moderately suitable areas had the greatest increase by 9.02×10^(5)ha under SSP245 and the least increase by 6.53×10^(5)ha under SSP370.The centroid coordinates of the total suitable areas tended to move northward.The potential risks of freezing injury in the high-latitude and-altitude areas of the Loess Plateau,China increased significantly.The northern areas of Xinzhou in Shanxi Province,China suffered the most serious freezing injury,and the southern areas of the Loess Plateau suffered the least.Environmental factors such as temperature,precipitation and geographical location had important impacts on the suitable area distribution and freezing injury risk of winter wheat.In the future,greater attention should be paid to the northward boundaries of both the winter wheat planting areas and the areas of freezing injury risk to provide the early warning of freezing injury and implement corresponding management strategies.
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
基金supported by grants from the National Key Research and Development Program of China(2021YFD1901203)。
文摘Transcription factors regulating crop uptake and translocation of the micronutrient Cu have not been identified.We isolated a novel R2R3-MYB transcription factor,OsMYB84,and showed that it was a positive regulator involved in uptake and transport of Cu via activation of OsCOPT2 and OsHMA expression.OsMYB84 was highly expressed in roots and anthers and induced by Cu.Overexpression of OsMYB84 promoted uptake and root-to-shoot translocation of Cu in rice,facilitated Cu distribution into grain and increased grain yield.In contrast,mutation of OsMYB84 reduced Cu concentration in xylem sap.OsMYB84 bound to the promoter region of OsCOPT2 and OsHMA5 and upregulated their expression.OsCOPT2 mutants showed reduced uptake of Cu and OsHMA5 overexpression lines showed increased root-to-shoot translocation of Cu.
基金Under the auspices of National Key Research and Development Program of China (No.2022YFC3103103)。
文摘Changes in vegetation status generally also represents changes in the ecological health of islands and reefs(IRs).However,studies are limited of drivers and trends of vegetation change of Nansha Islands,China and how they relate to climate change and human activities.To resolve this limitation,we studied changes to the Normalized Difference Vegetation Index(NDVI)vegetation-greenness index for 22 IRs of Nansha Islands during normal and extreme conditions.Trends of vegetation greenness were analyzed using Sen's slope and Mann-Kendall test at two spatial scales(pixel and island),and driving factor analyses were performed by time-lagged partial correlation analyses.These were related to impacts from human activities and climatic factors under normal(temperature,precipitation,radiation,and Normalized Difference Built-up Index(NDBI))and extreme conditions(wind speed and latitude of IRs)from 2016 to 2022.Results showed:1)among the 22 IRs,NDVI increased/decreased significantly in 15/4 IRs,respectively.Huayang Reef had the highest NDVI change-rate(0.48%/mon),and Zhongye Island had the lowest(–0.29%/mon).Local spatial patterns were in one of two forms:dotted-form,and degradation in banded-form.2)Under normal conditions,human activities(characterized by NDBI)had higher impacts on vegetation-greenness than other factors.3)Under extreme conditions,wind speed(R^(2)=0.2337,P<0.05)and latitude(R^(2)=0.2769,P<0.05)provided limited explanation for changes from typhoon events.Our results provide scientific support for the sustainable development of Nansha Islands and the United Nations‘Ocean Decade’initiative.
基金supported by the Foundation of High-level Talents of Qingdao Agricultural University(Grant No.665/1120041)the Open Research Fund of the State Key Laboratory of Soil Erosion and Dry-land Farming on the Loess Plateau(Grant No.A314021402-202221)+1 种基金the Natural Science Foundation of Shandong Province(Grants No.ZR2020QD114 and ZR2021ME167)the Postgraduate Innovation Program of Qingdao Agricultural University(Grant No.QNYCX22031).
文摘Urban vegetation in China has changed substantially in recent decades due to rapid urbanization and dramatic climate change.Nevertheless,the spatial differentiation of greenness among major cities of China and its evolution process and drivers are still poorly understood.This study examined the spatial patterns of vegetation greenness across 289 cities in China in 2000,2005,2010,2015,and 2018 by using spatial autocorrelation analysis on the Normalized Difference Vegetation Index(NDVI);then,the influencing factors were analyzed by using the optimal parameters-based geographical detector(OPGD)model and 18 natural and anthropogenic indicators.The findings demonstrated a noticeable rise in the overall greenness of the selected cities during 2000-2018.The cities in northwest China and east China exhibited the rapidest and slowest greening,respectively,among the six sub-regions.A significant positive spatial correlation was detected between the greenness of the 289 cities in different periods,but the correlation strength weakened over time.The hot and very hot spots in southern and eastern China gradually shifted to the southwest.While the spatial pattern of urban greenness in China is primarily influenced by wind speed(WS)and precipitation(PRE),the interaction between PRE and gross domestic product(GDP)has the highest explanatory power.The explanatory power of most natural factors decreased and,conversely,the influence of anthropogenic factors generally increased.These findings emphasize the variations in the influence strength of multiple factors on urban greenness pattern,which should be taken into account to understand and adapt to the changing urban ecosystem.
基金supported by the National Natural Science Foundation of China(Grant No.41931293 and 41871183)
文摘Equal access to education has long been a global concern and is important for rural revitalization strategy in the new era. However, little is known about the regional differences of educational resources in China, especially southwest China, where the spatial heterogeneity of human and physical geography is extremely significant. Using a dataset of primary and secondary schools of southwest China at county level in 2015, this study builds an index system to comprehensively measure the supply of educational resources, investigates the spatial pattern of educational resources via exploratory spatial data analysis(ESDA), and explores its influence factors through spatial econometrics. Results indicated that the supply level of educational resources in southwest China was relatively low;the high-high clusters of the supply of educational resources were mainly located in Sichuan Basin and the east of Western Sichuan Plateau, while the concentrated poverty-stricken areas of Guizhou and the border areas of Yunnan-SichuanGuizhou, especially Wumeng mountain area, were characterized by the low-low clusters. Furthermore, this study suggested that altitude, population density, local government revenue and rural residents' income were positively correlated with the supply of educational resources, while the negative influenceswere exerted by proportion of ethnic minority population and urbanization rate. And there were differences in the specific objects of actions of each factor. Ultimately, we proposed that village relocation and combination, as well as sustainable urbanization and regional development were practical paths to optimize the supply of educational resources in rural areas, thus promoting the modernization of agriculture and countryside.
基金This work was supported by the Creative Talented Person's Fund of Henan Province (No. [20051126);Natural Science Foundation of Henan Province (No. 072300460010);the Fund of Henan Normal University (No. 2006PL06);the grants from the Henan Key Laboratory for environmental pollution control.
文摘This paper described a new method for the trace determination of fenpropathrin, cyhalothrin and deltamethrin using multiwalled carbon nanotubes (MWCNTs) cartridge. Important parameters, such as the sample pH, eluent and its volume, sample flow rate and sample volume were investigated in detail. The linear ranges, the detection limits, and precisions (R.S.D.) were in the range of 0.1- 40 μg L^-11, 1.34.3 ng L^-1 and 2.3-2.8%, respectively. The performance of the proposed method was validated with real water samples, and the spiked recoveries were in the range of 91.7-117.8%, respectively. The experimental results demonstrated that the proposed method was an excellent alternative for the routine analysis of such pollutants in environmental samples. 2007 Qing Xiang Zhou. Published by Elsevier B.V. on behalf of Chinese Chemical Society. All rights reserved.
基金Under the auspices of the National Natural Science Foundation of China(No.42277097,41425007)the High-level Team Project of China Agricultural University,Chongqing Technology Innovation and Application Development Project(cstc2021jscx-cylh0024)the Deutsche Forschungsgeminschaft(DFG)-328017493/GRK 2366(No.Sino-German IRTG AMAIZE-P)。
文摘Atmospheric nitrogen(N)deposition has experienced significant change because of anthropogenic emissions,thereby exerting a pronounced impact on global ecosystem services.With the rapid development of industry and agriculture and the swift expansion of urban areas in China since the 1980s,reactive nitrogen(Nr)emissions and N deposition have substantially increased.In pursuit of im-proving air quality,China has implemented a series of environmental protection policies and undertaken diverse measures to reduce pol-lutant emissions.This paper is a review of multivariate data sources of atmospheric N deposition based on the results of literature from 1980 to 2023,and the original data from 1980 to 2020 are summarized,counted and calculated.The main findings are as follows:1)the annual average atmospheric N deposition ranged from approximately 20-40 kg/(ha·yr),with the variability primarily linked to different assessment methods;2)regional disparities were evident in the spatial distribution of N deposition,with elevated values concentrated in areas with intense Nr emissions;3)atmospheric N deposition significantly declined after 2010,particularly the deposition of oxidized N,while reduced N deposition remained stable.These results reflect the effects of China's serious control policies on nitrogen oxide(NO.)emissions and strengthen the importance of agricultural NH3 emission mitigation.This study contributes to a comprehensive understanding of the N dynamics in the emission-deposition process,and provides a scientific foundation for the research of environmental protection,climate change,and sustainable development.
基金the National Natural Science Foundation of China(Grant Nos.42273016 and 41573007)a special fund managed by the State Key Laboratory of Ore Deposit Geochemistry。
文摘Gallium isotope is a potential geochemical tool for understanding planetary processes,environmental pollution,and ore deposit formation.The reported Ga isotope compositions(δ^(71)Ga NIST994 values)of some international geological standards,such as BCR-2 and BHVO-2 basalts,exhibit inconsistencies between diff erent laboratories.During mass spectrometry analysis,we found thatδ^(71)Ga NIST994 values of geological standards with or without the correction of the interference of^(138)Ba^(2+)(mass/charge ratio=69)on 69 Ga show signifi cant isotope off sets,and thus effi cient separation of Ba and correcting the interference of^(138)Ba^(2+)are both crucial to obtain accurateδ^(71)Ga values.By comparingδ^(71)Ga NIST994 values(relative to NIST SRM 994 Ga)of the same geostandards from diff erent laboratories,we suggest that the isotopic heterogeneity from NIST SRM 994 Ga is one of the key reasons for the inconsistencies inδ^(71)Ga NIST994 values of BCR-2 and BHVO-2.To facilitate inter-laboratory comparisons,we measured the Ga isotopic compositions of 11 geological reference materials(including Pb-Zn ore,bauxite,igneous rocks,and loess)and two Ga solution standards(NIST SRM 3119a and Alfa Aesar).Theδ^(71)Ga NIST994 andδ^(71)Ga IPGP values of these reference materials vary from 1.12‰to 2.63‰and−0.13‰to 1.38‰,respectively,and can be used to evaluate the precision and accuracy of Ga isotope data from diff erent laboratories.
文摘Long-term exposure to high surface ozone(O_(3))concentrations,a complex oxidative atmospheric pollutant,can adversely impact human health.Based on O_(3)monitoring data from 261 cities worldwide in 2020,generalized additive model(GAM)and spatial data analysis(SDA)methods were applied in this study to quantitatively evaluate the spatiotemporal distribution of O_(3)concentration,exposure risk,and dominant meteorological factors.Results indicated that over 40%of the cities worldwide were exposed to harmful O_(3)concentration ranges(40-60μg/m^(3)),with most cities distributed in China and India.Moreover,significant seasonal variations in global O_(3)concentrations were observed,presenting as summer(45.6μg/m^(3))>spring(47.3μg/m^(3))>autumn(38.0μg/m^(3))>winter(33.6μg/m^(3)).Exposure analysis revealed that approximately 12.2%of the population in 261 cities were exposed to an environment with high O_(3)concentrations(80-160μg/m^(3)),with about 36.32 million people in major countries.Thus,the persistent increase in high O_(3)levels worldwide is a critical factor contributing to threats to human health.Furthermore,GAM results indicated temperature,relative humidity,and wind speed as primary determinants of O_(3)variability.The synergy of meteorological factors is critical for understanding O_(3)changes.Our findings are important for enforcing robust air quality policies and mitigating public risk.
基金funded by the National Natural Science Foundation of China(32060287)the Scientific Research Fundation Project of Yunnan Provincial Department of Science and Technology,Yunnan,China(202301BD070001-014).
文摘In the present study,an indoor potting experiment was conducted to study the effects of enhanced UV-B radiation and Magnaporthe oryzae on the growth,stomatal structure,photosynthesis,and endogenous hormone contents of a traditional rice cultivar Baijiaolaojing in the Yuanyang terraces of Yunnan Province.In addition,the relationships between these parameters and disease indices were analyzed.We aimed to clarify the response of the photosynthetic physiology of rice under the combined stress of UV-B radiation and M.oryzae.Compared with the M.oryzae infection treatment,all the treatments,including M.oryzae infection before(MBR),simultaneously with(MSR),and after(MAR)UV-B radiation significantly increased the rice height and biomass by 4%–11%and 30%–111%,respectively,and the stomatal structure and carotenoids content of leaves,while decreasing the contents of chlorophyll a and b,by 21%–41%and 63%–73%,respectively.Both the MSR and MBR treatments significantly increased the photosynthetic rate and transpiration rate of rice leaves.The MAR treatment weakened chlorophyll fluorescence parameters,including the actual photosystem II(PS II)photochemical efficiency,electron transport rate,photochemical quenching,and nonphotochemical quenching by 40%,39%,43%,and 24%,respectively.Moreover,the treatments of MAR,MSR,and MBR decreased the phytohormones content and the M.oryzae disease index by 27%–62%in rice leaves.Thus,the enhanced UV-B radiation contributed to suppressing the M.oryzae infection and alleviating its damage to the photosynthesis of rice leaves.This study is valuable for the control of rice blast fungus and offers important insights into plant pathology.