With the discovery of high-TC superconducting materials like Yttrium Barium Cupric Oxide, Bismuth Strontium Calcium Copper Oxide and Thallium Calcium Barium Copper Oxide, tremendous interest has developed over the pas...With the discovery of high-TC superconducting materials like Yttrium Barium Cupric Oxide, Bismuth Strontium Calcium Copper Oxide and Thallium Calcium Barium Copper Oxide, tremendous interest has developed over the past two years in understanding these materials as well as utilizing them in a variety of applications. The thin films of these materials are expected to play an important role in the area of microelectronics, especially for interconnects in integrated circuits, Josephson junctions, magnetic field sensors and optical detectors. Here, the authors designed a new nanocrystalline ceramic type II high-TC superconductor, Gadolinium Barium Copper Oxide (GdBaCuO/GBCO). The GBCO perovskite phase structure was prepared by the conventional solid state thermochemical reaction technique involving mixing, milling, calcination and sintering. In GBCO system, the method for controlling microstructure and superconducting state is related to oxygen content consideration because small changes in oxygen concentration can often?lead to huge change in Tc. In order to show the viability of the proposed method, super-conducting powder was prepared in special furnace. The sample was analyzed by X-Ray Diffraction (XRD), an indispensible non-destructive tool for structural materials characterization and quality control which makes use of the Debye-Scherrer method. The comparison of XRD results with JCPDS files confirmed the orthorhombic structure of the sample. Micro-structural features are studied using Scanning Electron Microscopy (SEM) which revealed that its particle size is in the nanometer range. It also confirmed the calculated value of particle size from Debye Scherrer’s formula. EDX plot shows the presence of all the constituents. X-ray instrumental peak broadening analysis was used to evaluate the size and lattice strain by the Williamson-Hall Plot method.展开更多
Transformer‐rectifier flux pumps are DC superconducting power supplies capable of charging superconducting magnets to high currents and stored magnetic energies.Here,we demonstrate a full‐wave superconducting flux p...Transformer‐rectifier flux pumps are DC superconducting power supplies capable of charging superconducting magnets to high currents and stored magnetic energies.Here,we demonstrate a full‐wave superconducting flux pump assembled from high‐temperature superconducting(HTS)wire that utilizes superconducting switches controlled by applied magnetic field.A negative DC offset occurs in the superconducting secondary of the circuit during operation which is related to the output load current.A feedback control system is proposed and demonstrated to account for the negative DC offset.Increasing the primary current proportional to the load current during operation allowed for the maximum output of the flux pump to be increased from 35 A to more than 275 A.These results are reproduced using a coupled electrical‐and magnetic–circuit model formulated in the MATLAB Simulink®package.展开更多
This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The pr...This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target.A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed.The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking.The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer.Thanks to the velocity observer,translational velocity measurements are not required,and the control chatter caused by noise-containing measurements is mitigated.An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the antidisturbance ability.The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method.Comparative simulations and multistage experiments are conducted to illustrate the tracking stability,anti-disturbance ability,and tracking robustness of the proposed method with a dynamic rotating target.展开更多
The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solutio...The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solution does not depend on the measured data continuously,regularization is needed to reestablish a continuous dependence.In this work,we investigate simple,but yet still provably convergent approaches to learning linear regularization methods from data.More specifically,we analyze two approaches:one generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of our previous work,and one tailored approach in the Fourier domain that is specific to CT-reconstruction.We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on.Finally,we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically,discuss their advantages and disadvantages and investigate the effect of discretization errors at differentresolutions.展开更多
Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extension...Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological.展开更多
文摘With the discovery of high-TC superconducting materials like Yttrium Barium Cupric Oxide, Bismuth Strontium Calcium Copper Oxide and Thallium Calcium Barium Copper Oxide, tremendous interest has developed over the past two years in understanding these materials as well as utilizing them in a variety of applications. The thin films of these materials are expected to play an important role in the area of microelectronics, especially for interconnects in integrated circuits, Josephson junctions, magnetic field sensors and optical detectors. Here, the authors designed a new nanocrystalline ceramic type II high-TC superconductor, Gadolinium Barium Copper Oxide (GdBaCuO/GBCO). The GBCO perovskite phase structure was prepared by the conventional solid state thermochemical reaction technique involving mixing, milling, calcination and sintering. In GBCO system, the method for controlling microstructure and superconducting state is related to oxygen content consideration because small changes in oxygen concentration can often?lead to huge change in Tc. In order to show the viability of the proposed method, super-conducting powder was prepared in special furnace. The sample was analyzed by X-Ray Diffraction (XRD), an indispensible non-destructive tool for structural materials characterization and quality control which makes use of the Debye-Scherrer method. The comparison of XRD results with JCPDS files confirmed the orthorhombic structure of the sample. Micro-structural features are studied using Scanning Electron Microscopy (SEM) which revealed that its particle size is in the nanometer range. It also confirmed the calculated value of particle size from Debye Scherrer’s formula. EDX plot shows the presence of all the constituents. X-ray instrumental peak broadening analysis was used to evaluate the size and lattice strain by the Williamson-Hall Plot method.
基金supported in part by the New Zealand Ministry of Business,Innovation and Employment(MBIE RTVU1916)has been part‐funded by STEP,a UKAEA programme to design and build a prototype fusion energy plant and a path to commercial fusion.
文摘Transformer‐rectifier flux pumps are DC superconducting power supplies capable of charging superconducting magnets to high currents and stored magnetic energies.Here,we demonstrate a full‐wave superconducting flux pump assembled from high‐temperature superconducting(HTS)wire that utilizes superconducting switches controlled by applied magnetic field.A negative DC offset occurs in the superconducting secondary of the circuit during operation which is related to the output load current.A feedback control system is proposed and demonstrated to account for the negative DC offset.Increasing the primary current proportional to the load current during operation allowed for the maximum output of the flux pump to be increased from 35 A to more than 275 A.These results are reproduced using a coupled electrical‐and magnetic–circuit model formulated in the MATLAB Simulink®package.
基金supported in part by the National Key Research and Development Program of China(2021ZD0114503,2022YFB4701800,and 2021YFB1714700)the National Natural Science Foundation of China(62273098,62027810,61971071,62133005,62273138,and 62103140)+9 种基金the Major Research Plan of the National Natural Science Foundation of China(92148204)the Newton International Fellowships 2022 funded by the Royal Society,UK(NIF\R1\221089)Hunan Leading Talent of Technological Innovation(2022RC3063)Hunan Science Fund for Distinguished Young Scholars(2021JJ10025)the Hunan Key Research and Development Program(2021GK4011 and 2022GK2011)the Changsha Science and Technology Major Project(kh2003026)the Natural Science Foundation of Hunan Province(2021JJ20029 and 2021JJ40124)the Science and Technology Innovation Program of Hunan Province(2021RC3060)the Joint Open Foundation of the State Key Laboratory of Robotics(2021-KF-22-17)the China University Industry-University-Research Innovation Fund(2020HYA06006).
文摘This study proposes an image-based visual servoing(IBVS)method based on a velocity observer for an unmanned aerial vehicle(UAV)for tracking a dynamic target in Global Positioning System(GPS)-denied environments.The proposed method derives the simplified and decoupled image dynamics of underactuated UAVs using a constructed virtual camera and then considers the uncertainties caused by the unpredictable rotations and velocities of the dynamic target.A novel image depth model that extends the IBVS method to track a rotating target with arbitrary orientations is proposed.The depth model ensures image feature accuracy and image trajectory smoothness in rotating target tracking.The relative velocities of the UAV and the dynamic target are estimated using the proposed velocity observer.Thanks to the velocity observer,translational velocity measurements are not required,and the control chatter caused by noise-containing measurements is mitigated.An integral-based filter is proposed to compensate for unpredictable environmental disturbances in order to improve the antidisturbance ability.The stability of the velocity observer and IBVS controller is analyzed using the Lyapunov method.Comparative simulations and multistage experiments are conducted to illustrate the tracking stability,anti-disturbance ability,and tracking robustness of the proposed method with a dynamic rotating target.
基金the support of the German Research Foundation,projects BU 2327/19-1 and MO 2962/7-1support from the EPSRC grant EP/R513106/1support from the Alan Turing Institute.
文摘The reconstruction of images from their corresponding noisy Radon transform is a typical example of an ill-posed linear inverse problem as arising in the application of computerized tomography(CT).As the(naive)solution does not depend on the measured data continuously,regularization is needed to reestablish a continuous dependence.In this work,we investigate simple,but yet still provably convergent approaches to learning linear regularization methods from data.More specifically,we analyze two approaches:one generic linear regularization that learns how to manipulate the singular values of the linear operator in an extension of our previous work,and one tailored approach in the Fourier domain that is specific to CT-reconstruction.We prove that such approaches become convergent regularization methods as well as the fact that the reconstructions they provide are typically much smoother than the training data they were trained on.Finally,we compare the spectral as well as the Fourier-based approaches for CT-reconstruction numerically,discuss their advantages and disadvantages and investigate the effect of discretization errors at differentresolutions.
基金supported by the National Natural Science Foundation of China(50773009)Science and Technology Commission of Shanghai Municipality,China(08JC1400600)~~
基金revised date May 14,2007 This work was partly supported by the UK EPSRC Grant(No.GR/S98603/01).
文摘Rough set theory provides a useful mathematical foundation for developing automated computational systems that can help understand and make use of imperfect knowledge. Despite its recency, the theory and its extensions have been widely applied to many problems, including decision analysis, data mining, intelligent control and pattern recognition. This paper presents an outline of the basic concepts of rough sets and their major extensions, covering variable precision, tolerance and fuzzy rough sets. It also shows the diversity of successful applications these theories have entailed, ranging from financial and business, through biological and medicine, to physical, art, and meteorological.