期刊文献+
共找到47篇文章
< 1 2 3 >
每页显示 20 50 100
Metallurgical characteristics of armour steel welded joints used for combat vehicle construction 被引量:1
1
作者 G.Magudeeswaran V.Balasubramanian G.Madhusudan Reddy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第5期590-606,共17页
Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced crac... Austenitic stainless steel(ASS) and High nickel steel(HNS) welding consumables are being used for welding Q&T steels, as they have higher solubility for hydrogen in austenitic phase, to avoid hydrogen induced cracking(HIC) but they are very expensive. In recent years, the developments of low hydrogen ferritic steel(LHF) consumables that contain no hygroscopic compounds are utilized for welding Q&T steels. Heat affected zone(HAZ) softening is another critical issue during welding of armour grade Q&T steels and it depends on the welding process employed and the weld thermal cycle. In this investigation an attempt has been made to study the influence of welding consumables and welding processes on metallurgical characteristics of armour grade Q&T steel joints by various metallurgical characterization procedures. Shielded metal arc welding(SMAW) and flux cored arc welding(FCAW) processes were used for making welds using ASS, LHF and HNS welding consumables. The joints fabricated by using LHF consumables offered lower degree of HAZ softening and there is no evidence of HIC in the joints fabricated using LHF consumables. 展开更多
关键词 Armour grade Q&T STEEL Heat affected zone SOFTENING Shielded metal ARC WELDING PROCESS Flux cored ARC WELDING PROCESS AUSTENITIC stainless STEEL Low hydrogen ferritic STEEL High nickel STEEL
下载PDF
A review on the current status of Fe-Al based ferritic lightweight steel
2
作者 Shivkumar Khaple Brahma Raju Golla V.V.Satya Prasad 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2023年第8期1-22,共22页
There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissio... There is an ever-growing demand for lightweighting of steel for structural applications,particularly for automobile and transportation applications.It is mainly to improve the fuel efficiency,reduce the CO_(2) emissions and cater the increased passenger safety.Hence,the main focus is to reduce the density of the steel structure without affecting other properties.This can be achieved by down-gauging of the conventional steel by replacing the steel with higher strength,however,it is limited by dent resistance and stiffness.So,the novel idea is to reduce the density of the steel itself.It is well-known that addition of Al to steel reduces the density of the steel.About 1wt% of Al addition to steel can reduce the density by 1.3%,decreases the elastic modulus by 2% and it improves the strength by about 40 MPa.There is a new class of low-density/lightweight steel with addition of about 6-9 wt% Al to steel.Addition of higher than 9 wt%of Al in steel leads to embrittlement issues due to ordering and environmental effect.These disordered Fe-Al lightweight steels have raised considerable interest due to their low-density,high ductility,costeffectiveness and feasibility for bulk production.The low-density steels are envisaged in the development of an advanced lightweight ground transportation system,huge structures and also for certain defence applications and in thermal power plants. 展开更多
关键词 Low-density steels Disordered FeeAl Thermo-mechanical processing Microstructure Properties Structure-property correlation
下载PDF
Microstructure,mechanical and corrosion behavior of high strength AA7075aluminium alloy friction stir welds-Effect of post weld heat treatment 被引量:21
3
作者 P.Vijaya Kumar G.Madhusudhan Reddy K.Srinivasa Rao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第4期362-369,共8页
High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors... High strength aluminium alloy AA7075(Al-Zn-Mg-Cu) is a precipitate hardenable alloy widely used in the aerospace,defense,marine and automobile industries.Use of the heat treatable aluminium alloys in all these sectors is ever-increasing owing to their excellent strength-toweight ratio and reasonably good corrosion resistance.The shortage in corrosion resistance,however,usually poses negative concern about their reliability and lifetime when they service in the variable marine environments.These alloys also exhibit low weldability due to poor solidification microstructure,porosity in fusion zone and lose their mechanical properties when they are welded by fusion welding techniques.Friction stir welding(FSW) is a reliable technique to retain the properties of the alloy as the joining takes place in the solid state.The welds are susceptible to corrosion due to the microstructural changes in the weld nugget during FSW.In this work,the effect of post weld treatments,viz.,peak aging(T6) and retrogression & reaging(RRA),on the microstructure,mechanical properties and pitting corrosion has been studied.Friction stir welding of 8 mm-thick AA7075 alloy was carried out.The microstructural changes of base metal and nugget zone of friction stir welds were studied using optical microscopy,scanning electron microscopy and transmission electron microscopy.Tensile and hardness test of base metal and welds has been carried out.Pitting corrosion resistance was determined through dynamic polarization test.It was observed that the hardness and strength of weld were observed to be comparatively high in peak aged(T6) condition but the welds showed poor corrosion resistance.The resistance to pitting corrosion was improved and the mechanical properties were maintained by RRA treatment.The resistance to pitting corrosion was improved in RRA condition with the minimum loss of weld strength. 展开更多
关键词 7075铝合金 高强度铝合金 搅拌摩擦焊 耐腐蚀性 热处理效果 微观结构 焊缝 机械性能
下载PDF
Welding of nickel free high nitrogen stainless steel: Microstructure and mechanical properties 被引量:13
4
作者 Raffi Mohammed G.Madhusudhan Reddy K.Srinivasa Rao 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第2期59-71,共13页
High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grad... High nitrogen stainless steel(HNS) is a nickel free austenitic stainless steel that is used as a structural component in defence applications for manufacturing battle tanks as a replacement of the existing armour grade steel owing to its low cost, excellent mechanical properties and better corrosion resistance.Conventional fusion welding causes problems like nitrogen desorption, solidification cracking in weld zone, liquation cracking in heat affected zone, nitrogen induced porosity and poor mechanical properties.The above problems can be overcome by proper selection and procedure of joining process. In the present work, an attempt has been made to correlate the microstructural changes with mechanical properties of fusion and solid state welds of high nitrogen steel. Shielded metal arc welding(SMAW), gas tungsten arc welding(GTAW), electron beam welding(EBW) and friction stir welding(FSW) processes were used in the present work. Optical microscopy, scanning electron microscopy and electron backscatter diffraction were used to characterize microstructural changes. Hardness, tensile and bend tests were performed to evaluate the mechanical properties of welds. The results of the present investigation established that fully austenitic dendritic structure was found in welds of SMAW. Reverted austenite pools in the martensite matrix in weld zone and unmixed zones near the fusion boundary were observed in GTA welds. Discontinuous ferrite network in austenite matrix was observed in electron beam welds.Fine recrystallized austenite grain structure was observed in the nugget zone of friction stir welds.Improved mechanical properties are obtained in friction stir welds when compared to fusion welds. This is attributed to the refined microstructure consisting of equiaxed and homogenous austenite grains. 展开更多
关键词 High nitrogen AUSTENITIC stainless steel(HNS) Shielded metal ARC WELDING (SMAW) Gas tungsten ARC WELDING (GTAW) Electron beam WELDING (EBW) Friction stir WELDING (FSW)
下载PDF
Optimization of friction stir welding parameters for improved corrosion resistance of AA2219 aluminum alloy joints 被引量:11
5
作者 G.RAMBABU D.BALAJI NAIK +2 位作者 C.H.VENKATA RAO K.SRINIVASA RAO G.MADHUSUDAN REDDY 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第4期330-337,共8页
The aluminium alloy AA2219(Al—Cu—Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance.Welding is main fabrication method of AA2219 al... The aluminium alloy AA2219(Al—Cu—Mg alloy) is widely used in the fabrication of lightweight structures with high strength-to-weight ratio and good corrosion resistance.Welding is main fabrication method of AA2219 alloy for manufacturing various engineering components.Friction stir welding(FSW) is a recently developed solid state welding process to overcome the problems encountered in fusion welding.This process uses a non-consumable tool to generate frictional heat on the abutting surfaces.The welding parameters,such as tool pin profile,rotational speed,welding speed and axial force,play major role in determining the microstructure and corrosion resistance of welded joint.The main objective of this work is to develop a mathematical model to predict the corrosion resistance of friction stir welded AA2219 aluminium alloy by incorporating FSW process parameters.In this work a central composite design with four factors and five levels has been used to minimize the experimental conditions.Dynamic polarization testing was carried out to determine critical pitting potential in millivolt,which is a criteria for measuring corrosion resistance and the data was used in model.Further the response surface method(RSM) was used to develop the model.The developed mathematical model was optimized using the simulated annealing algorithm optimizing technique to maximize the corrosion resistance of the friction stir welded AA2219 aluminium alloy joints. 展开更多
关键词 2219铝合金 耐腐蚀性能 搅拌摩擦焊 焊接接头 参数优化 数学模型 摩擦搅拌焊接 模拟退火算法
下载PDF
Friction welding of AA6061 to AISI 4340 using silver interlayer 被引量:8
6
作者 SURESH D.MESHRAM G.MADHUSUDHAN REDDY 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期292-298,共7页
The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanaly... The present work pertains to the study on joining of AA6061 and AISI 4340 through continuous drive friction welding. The welds were evaluated by metallographic examination, X-ray diffraction, electron probe microanalysis, tensile test and microhardness. The study reveals that the presence of an intermetallic compound layer at the bonded interface exhibits poor tensile strength and elongation. Mg in AA6061 near to the interface is found to be favourable for the formation and growth of Fe2Al5 intermetallics. Introduction of silver as an interlayer through electroplating on AISI 4340 resulted in accumulation of Si at weld interface, replacing Mg at AA6061 side, thereby reducing the width of intermetallic compound layer and correspondingly increasing the tensile strength. Presence of silver at the interface results in partial replacement of Fe-Al based intermetallic compounds with Ag-Al based compounds. The presence of these intermetallics was confirmed by X-ray diffraction technique. Since Ag-Al phases are ductile in nature, tensile strength is not deteriorated and the silicon segregation at weld interface on AA6061 in the joints with silver interlayer acts as diffusion barrier for Fe and further avoids formation of Fe-Al based intermetallics. A maximum tensile strength of 240 MPa along with 4.9% elongation was obtained for the silver interlayer dissimilar metal welds. The observed trends in tensile properties and hardness were explained in relation to the microstructure. 展开更多
关键词 AISI 摩擦焊接 金属间化合物层 X-射线衍射技术 焊接界面 博士 夹层
下载PDF
Microstructure and pitting corrosion of shielded metal arc welded high nitrogen stainless steel 被引量:8
7
作者 RAFFI MOHAMMED G.MADHUSUDHAN REDDY K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期237-243,共7页
The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase ... The present work is aimed at studying the microstructure and pitting corrosion behaviour of shielded metal arc welded high nitrogen steel made of Cromang-N electrode. Basis for selecting this electrode is to increase the solubility of nitrogen in weld metal due to high chromium and manganese content. Microscopic studies were carried out using optical microscopy(OM) and field emission scanning electron microscopy(FESEM). Energy back scattered diffraction(EBSD) method was used to determine the phase analysis, grain size and orientation image mapping. Potentio-dynamic polarization testing was carried out to study the pitting corrosion resistance in aerated 3.5% NaCl environment using a GillAC electrochemical system. The investigation results showed that the selected Cr-Mn-N type electrode resulted in a maximum reduction in delta-ferrite and improvement in pitting corrosion resistance of the weld zone was attributed to the coarse austenite grains owing to the reduction in active sites of the austenite/delta ferrite interface and the decrease in galvanic interaction between austenite and delta-ferrite. 展开更多
关键词 耐点蚀性能 高氮不锈钢 焊缝金属 电弧焊接 研究组织 屏蔽 场发射扫描电子显微镜 奥氏体晶粒
下载PDF
Prediction of flow stress of 7017 aluminium alloy under high strain rate compression at elevated temperatures 被引量:7
8
作者 Ravindranadh BOBBILI B.RAMAKRISHNA +1 位作者 V.MADHU A.K.GOGIA 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期93-98,共6页
An artificial neural network(ANN) constitutive model and JohnsoneC ook(Je C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments a... An artificial neural network(ANN) constitutive model and JohnsoneC ook(Je C) model were developed for 7017 aluminium alloy based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments at various temperatures. A neural network configuration consists of both training and validation, which is effectively employed to predict flow stress. Temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model was performed. It was observed that the developed neural network model could predict flow stress under various strain rates and temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB over a range of temperatures(25 e300 C), strains(0.05e0.3) and strain rates(1500e4500 s 1) were employed to formulate JeC model to predict the flow stress behaviour of 7017 aluminium alloy under high strain rate loading. The JeC model and the back-propagation ANN model were developed to predict the flow stress of 7017 aluminium alloy under high strain rates, and their predictability was evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the J-C model are found to be 0.8461 and 10.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. The predictions of ANN model are observed to be in consistent with the experimental data for all strain rates and temperatures. 展开更多
关键词 Aluminium ALLOY Artificial NEURAL NETWORK Johnson-Cook model
下载PDF
Optimization of process parameters of aluminum alloy AA 2014-T6 friction stir welds by response surface methodology 被引量:7
9
作者 Ramanjaneyulu KADAGANCHI Madhusudhan Reddy GANKIDI Hina GOKHALE 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期209-219,共11页
The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging ... The heat treatable aluminum-copper alloy AA2014 finds wide application in the aerospace and defence industry due to its high strength-toweight ratio and good ductility. Friction stir welding(FSW) process, an emerging solid state joining process, is suitable for joining this alloy compared to fusion welding processes. This work presents the formulation of a mathematical model with process parameters and tool geometry to predict the responses of friction stir welds of AA 2014-T6 aluminum alloy, viz yield strength, tensile strength and ductility. The most influential process parameters considered are spindle speed, welding speed, tilt angle and tool pin profile. A four-factor, five-level central composite design was used and a response surface methodology(RSM) was employed to develop the regression models to predict the responses.The mechanical properties, such as yield strength(YS), ultimate tensile strength(UTS) and percentage elongation(%El), are considered as responses. Method of analysis of variance was used to determine the important process parameters that affect the responses. Validation trials were carried out to validate these results. These results indicate that the friction stir welds of AA 2014-T6 aluminum alloy welded with hexagonal tool pin profile have the highest tensile strength and elongation, whereas the joints fabricated with conical tool pin profile have the lowest tensile strength and elongation. 展开更多
关键词 焊接工艺参数 搅拌摩擦焊 铝合金焊接 响应面分析法 抗拉强度 优化 焊接接头 屈服强度
下载PDF
Enhancement of wear and ballistic resistance of armour grade AA7075 aluminium alloy using friction stir processing 被引量:7
10
作者 I.SUDHAKAR V.MADHU +1 位作者 G.MADHUSUDHAN REDDY K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第1期10-17,共8页
Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter t... Industrial applications of aluminium and its alloys are restricted because of their poor tribological properties. Thermal spraying, laser surfacing, electron beam welding are the most widely used techniques to alter the surface morphology of base metal. Preliminary studies reveal that the coating and layering of aluminium alloys with ceramic particles enhance the ballistic resistance. Furthermore, among aluminium alloys,7075 aluminium alloy exhibits high strength which can be compared to that of steels and has profound applications in the designing of lightweight fortification structures and integrated protection systems. Having limitations such as poor bond integrity, formation of detrimental phases and interfacial reaction between reinforcement and substrate using fusion route to deposit hard particles paves the way to adopt friction stir processing for fabricating surface composites using different sizes of boron carbide particles as reinforcement on armour grade 7075 aluminium alloy as matrix in the present investigation. Wear and ballistic tests were carried out to assess the performance of friction stir processed AA7075 alloy. Significant improvement in wear resistance of friction stir processed surface composites is attributed to the change in wear mechanism from abrasion to adhesion. It has also been observed that the surface metal matrix composites have shown better ballistic resistance compared to the substrate AA7075 alloy. Addition of solid lubricant Mo S2 has reduced the depth of penetration of the projectile to half that of base metal AA7075 alloy. For the first time, the friction stir processing technique was successfully used to improve the wear and ballistic resistances of armour grade high strength AA7075 alloy. 展开更多
关键词 Armour GRADE aluminium alloy Friction STIR processing Boron carbide Molybdenum DISULPHIDE WEAR BALLISTIC RESISTANCE
下载PDF
Microstructure and pitting corrosion of armor grade AA7075 aluminum alloy friction stir weld nugget zone-Effect of post weld heat treatment and addition of boron carbide 被引量:6
11
作者 P.VIJAYA KUMAR G.MADHUSUDHAN REDDY K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期166-173,共8页
Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 alu... Friction stir welding(FSW) of high strength aluminum alloys has been emerged as an alternative joining technique to avoid the problems during fusion welding.In recent times FSW is being used for armor grade AA7075 aluminum alloy in defense,aerospace and marine applications where it has to serve in non uniform loading and corrosive environments.Even though friction stir welds of AA7075 alloy possess better mechanical properties but suffer from poor corrosion resistance.The present work involves use of retrogression and reaging(RRA) post weld heat treatment to improve the corrosion resistance of welded joints of aluminum alloys.An attempt also has been made to change the chemical composition of the weld nugget by adding B4C nano particles with the aid of the FSW on a specially prepared base metal plate in butt position.The effects of peak aged condition(T6),RRA and addition of B4C nano particles on microstructure,hardness and pitting corrosion of nugget zone of the friction stir welds of AA7075 alloy have been studied.Even though RRA improved the pitting corrosion resistance,its hardness was slightly lost.Significant improvement in pitting corrosion resistance was achieved with addition of boron carbide powder and post weld heat treatment of RRA. 展开更多
关键词 7075铝合金 搅拌摩擦焊 焊后热处理 碳化硼颗粒 抗点蚀 微观结构 装甲 7075合金
下载PDF
Microstructure and pitting corrosion resistance of AA2219 Ale Cu alloy friction stir welds e Effect of tool profile 被引量:5
12
作者 Ch VENKATA RAO G.MADHUSUDHAN REDDY K.SRINIVASA RAO 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第2期123-131,共9页
AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Ev... AA2219 Ale Cu alloy is widely used in defence and aerospace applications due to required combination of high strength-to-weight ratio and toughness.Fabrication of components used for defence always involves welding.Even though the mechanical properties of the base metal are better,but the alloy suffers from poor mechanical and corrosion properties during fusion welding.To overcome the problems of fusion welding,friction stir welding(FSW) is recognized as an alternative solid state joining method aimed to improve the mechanical and corrosion properties.Tool profile is one of the important variables which affect the performance of the friction stir weld.In the present work the effect of tool profile on the microstructure and pitting corrosion of AA2219 aluminiumecopper alloy was studied.Electron backscattered diffraction results established that the grain size and orientation of weld nugget of triangle profile is finer than that of conical profile.Differential scanning calorimetric results show the evidence of precipitate dissolution during FSW.It was found that the microstructure changes,such as grain size and its orientation precipitate dissolution during FSW influence the hardness and corrosion behaviour.Pitting corrosion resistance of friction stir welds of AA2219 was found to be better for triangle profile tool compared to conical profile which is attributed to material flow and strengthening precipitate morphology in various zones.Higher amount of heat generation during FSW made using triangle profile tool may be the reason for greater dissolution of strengthening precipitates in nugget zone and coarsening in thermo mechanically affected zone(TMAZ) and heat affected zone(HAZ). 展开更多
关键词 AL-CU合金 搅拌摩擦焊接 微观结构 轮廓 点蚀 摩擦搅拌焊接 电子背散射衍射 机械性能
下载PDF
Low velocity impact studies of E-glass/epoxy composite laminates at different thicknesses and temperatures 被引量:5
13
作者 T.Sreekantha Reddy P.Rama Subba Reddy Vemuri Madhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2019年第6期897-904,共8页
Low velocity impact experiments were carried out on E-glass/epoxy composite laminates having varying thicknesses at sub zero and elevated temperatures using hemi spherical steel impactor of 16 mm diameter with impact ... Low velocity impact experiments were carried out on E-glass/epoxy composite laminates having varying thicknesses at sub zero and elevated temperatures using hemi spherical steel impactor of 16 mm diameter with impact energies in the rage of 50-150 J.The performance of the laminates was assessed in terms of energy absorption,maximum displacement,peak force and failure behaviour.Results indicated that the effect of temperature on energy absorption of the laminate is negligible although the laminates are embrittling at sub zero temperatures.However it has influence on failure behaviour and displacement.Peak force has increased linearly with increase in laminate thickness from 5 to 10 mm.However it got reduced by 25% when temperature was increased from-20℃ to 100℃,Based on experimental results,laminate perforation energies were predicted using curve fitting equations.Statistical analysis was carried out using Taguchi method to identify the global effects of various parameters on laminate performance and confirmed that the laminate thickness has significant influence as compared to temperature,for the studied range. 展开更多
关键词 LAMINATES Glass fibres Impact behaviour DELAMINATION
下载PDF
Cold Cracking of Flux Cored Arc Welded Armour Grade High Strength Steel Weldments 被引量:6
14
作者 G.Magudeeswaran V.Balasubramanian G.Madhusudhan Reddy 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2009年第4期516-526,共11页
In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc wel... In this investigation, an attempt has been made to study the influence of welding consumables on the factors that influence cold cracking of armour grade quenched and tempered (Q&.T) steel welds. Flux cored arc welding (FCAW) process were used making welds using austenitic stainless steel (ASS) and low hydrogen ferritic steel (LHF) consumables. The diffusible hydrogen levels in the weld metal of the ASS and LHF consumables were determined by mercury method. Residual stresses were evaluated using X-ray stress analyzer and implant test was carried out to study the cold cracking of the welds. Results indicate that ASS welds offer a greater resistance to cold cracking of armour grade Q&T steel welds. 展开更多
关键词 Quenched and tempered steel Flux cored arc welding process Weld cold cracking Implant testing
下载PDF
Development of cost effective personnel armour through structural hybridization 被引量:4
15
作者 P.Rama Subba Reddy T.Sreekantha Reddy +2 位作者 I.Srikanth Juhi Kushwaha V.Madhu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第6期1089-1097,共9页
The objective of the present study is to develop cost effective thermoplastic hybrid laminate using Dyneema®HB50 and Tensylon®HSBD 30A through structural hybridization method.Laminates having 20 mm thickness... The objective of the present study is to develop cost effective thermoplastic hybrid laminate using Dyneema®HB50 and Tensylon®HSBD 30A through structural hybridization method.Laminates having 20 mm thickness were fabricated and subjected to 7.6239 mm mild steel core projectile with an impact velocity of 730±10 ms1.Parameters such as energy absorption,back face deformation and rate of back face deformation were measured as a function of hybridization ratio.It was observed that hybrid laminate with 50:50 ratio(w/w)of Tensylon®and Dyneema®with Tensylon®as front face showed 200%more energy absorption when compared to 100%Tensylon®laminate and showed equal energy absorption as that of expensive 100%Dyneema®laminate.Moreover,hybrid laminate with TD50:50 ratio showed 40%lower in terms of final back face deformation than Dyneema®laminate.Rate of back face deformation was also found to be slow for hybrid laminate as compared to Dyneema®laminate.Dynamic mechanical analysis showed that,Tensylon®laminate has got higher stiffness and lower damping factor than Dyneema®and hybrid laminates.The interface between Tensylon®and Dyneema®layers was found to be separating during the penetration process due to the poor interfacial bonding.Failure behaviour of laminates for different hybridization ratios were studied by sectioning the impacted laminates.It was observed that,the Tensylon®laminate has undergone shear cutting of fibers as major failure mode whereas the hybrid laminate showed shear cutting followed by tensile stretching,fiber pull out and delamination.These inputs are highly useful for body armour applications to design cost effective armour with enhanced performance. 展开更多
关键词 Dyneema® Tensylon® Hybrid laminate Ballistic impact Energy absorption Back face signature
下载PDF
Neural network modeling to evaluate the dynamic flow stress of high strength armor steels under high strain rate compression 被引量:3
16
作者 Ravindranadh BOBBILI V.MADHU A.K.GOGIA 《Defence Technology(防务技术)》 SCIE EI CAS 2014年第4期334-342,共9页
An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) exper... An artificial neural network(ANN) constitutive model is developed for high strength armor steel tempered at 500 C, 600 C and 650 C based on high strain rate data generated from split Hopkinson pressure bar(SHPB) experiments. A new neural network configuration consisting of both training and validation is effectively employed to predict flow stress. Tempering temperature, strain rate and strain are considered as inputs, whereas flow stress is taken as output of the neural network. A comparative study on Johnsone Cook(Je C) model and neural network model is performed. It was observed that the developed neural network model could predict flow stress under various strain rates and tempering temperatures. The experimental stressestrain data obtained from high strain rate compression tests using SHPB, over a range of tempering temperatures(500e650 C), strains(0.05e0.2) and strain rates(1000e5500/s) are employed to formulate Je C model to predict the high strain rate deformation behavior of high strength armor steels. The J-C model and the back-propagation ANN model were developed to predict the high strain rate deformation behavior of high strength armor steel and their predictability is evaluated in terms of correlation coefficient(R) and average absolute relative error(AARE). R and AARE for the Je C model are found to be 0.7461 and 27.624%, respectively, while R and AARE for the ANN model are 0.9995 and 2.58%, respectively. It was observed that the predictions by ANN model are in consistence with the experimental data for all tempering temperatures. 展开更多
关键词 人工神经网络模型 高应变率 高强度 装甲钢 流变应力 可预测性 压缩 评估
下载PDF
Process parameters-weld bead geometry interactions and their influence on mechanical properties:A case of dissimilar aluminium alloy electron beam welds 被引量:3
17
作者 P.Mastanaiah Abhay Sharma G.Madhusudhan Reddy 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2018年第2期137-150,共14页
Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the... Prediction of weld bead geometry is always an interesting and challenging research topic as it involves understanding of complex multi input and multi output system. The weld bead geometry has a profound impact on the load bearing capability of a weld joint, which in-turn decides the performance in real time service conditions. The present study introduces a novel approach of detecting a relationship between weld bead geometry and mechanical properties(e.g. tensile load) for the purpose of catering the best the process could offer. The significance of the proposed approach is demonstrated by a case of dissimilar aluminium alloy(AA2219 and AA5083) electron beam welds. A mathematical model of tensile braking load as a function of geometrical attributes of weld bead geometry is presented. The results of investigation suggests the effective thickness of weld-a geometric parameter of weld bead has the most significant influence on tensile breaking load of dissimilar weld joint. The observations on bead geometry and the mechanical properties(microhardness, ultimate tensile load and face bend angle) are correlated with detailed metallurgical analysis. The fusion zone of dissimilar electron beam weld has finer grain size with a moderate evaporation and segregation of alloying elements magnesium and copper respectively.The mechanical properties of weld joint are controlled by optimum bead geometry and HAZ softening in weaker AA5083 Al alloy. 展开更多
关键词 Electron beam WELDING AA2219 AA5083 BEAD GEOMETRY TENSILE BREAKING load
下载PDF
Electrochemical process of titanium extraction 被引量:4
18
作者 CH. RVS. NAGESH C. S. RAMACHANDRAN 《中国有色金属学会会刊:英文版》 EI CSCD 2007年第2期429-433,共5页
A wide variety of processes are being pursued by researchers for cost effective extraction of titanium metal. Electrochemical processes are promising due to simplicity and being less capital intensive. Some of the pro... A wide variety of processes are being pursued by researchers for cost effective extraction of titanium metal. Electrochemical processes are promising due to simplicity and being less capital intensive. Some of the promising electrochemical processes of titanium extraction were reviewed and the results of laboratory scale experiments on electrochemical reduction of TiO2 granules were brought out. Some of the kinetic parameters of the reduction process were discussed while presenting the quality improvements achieved in the experimentation. 展开更多
关键词 萃取 电化学还原过程 动力学参数
下载PDF
Microstructural observations on the terminal penetration of long rod projectile 被引量:2
19
作者 Krushna Kumbhar P.Ponguru Senthil A.K.Gogia 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2017年第6期413-421,共9页
Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recov... Present study focuses on the terminal penetration of tungsten heavy alloy(WHA) long rod penetrator impacted against armour steel at an impact velocity of 1600 m/s. The residual penetrator and armour steel target recovered after the ballistic test have been characterized using optical microscope, scanning electron microscope(SEM) and electron probe micro analyzer(EPMA). Metallurgical changes in target steel and WHA remnant have been analysed. Large shear stresses and shear localization have resulted in local failure and formation of erosion products. Severe plastic deformation acts as precursor for formation of adiabatic shear band(ASB) induced cracks in target steel. Recovered WHA penetrator remnant also exhibits severe plastic deformation forming localized shear bands, ASB induced cracks and shock induced cracks. 展开更多
关键词 Long rod PROJECTILE TERMINAL PENETRATION SHEAR localization ADIABATIC SHEAR band Tungsten heavy alloy Armour steel
下载PDF
Gas tungsten arc welding of ZrB_2-SiC based ultra high temperature ceramic composites 被引量:2
20
作者 R.V.KRISHNARAO G.MADHUSUDHAN REDDY 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2015年第3期188-196,共9页
The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield le... The difficulty in fabricating the large size or complex shape limits the application of ZrB2-SiC composites. Joining them by fusion welding without or with preheating, controlled cooling under protective gas shield leads to thermal shock failure or porosity at the weld interface. In the present work, a filler material of(ZrB2-SiC-B4C-YAG) composite with oxidation resistance and thermal shock resistance was produced in the form of welding wire. Using the filler, gas tungsten arc welding(GTAW) was performed without employing preheating, post controlled cooling and extraneous protective gas shield to join hot pressed ZrB2-SiC(ZS), and pressureless sintered ZrB2-SiC-B4C-YAG(ZSBY) composites to themselves. The fusion welding resulted in cracking and non-uniform joining without any filler material. The weld interfaces of the composites were very clean and coherent. The Vickers micro-hardness across the weld interface was found to increase due to the increase in the volume % of both SiC and B4C in the filler material. The shear strength of the weld was about 50% of the flextural strength of the parent composite. 展开更多
关键词 陶瓷基复合材料 焊接界面 钨极氩弧焊 气体保护 超高温 填充材料 ZRB2 形状复杂
下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部