Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important a...Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.展开更多
In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the d...In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.展开更多
The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent ...The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process.展开更多
Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease ...Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.展开更多
The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and ...The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios.The paper systematically reviewed the available literature using the PRISMA guiding principle.The study aims to provide a detailed overview of the increasing use of FL in IoT networks,including the architecture and challenges.A systematic review approach is used to collect,categorize and analyze FL-IoT-based articles.Asearch was performed in the IEEE,Elsevier,Arxiv,ACM,and WOS databases and 92 articles were finally examined.Inclusion measures were published in English and with the keywords“FL”and“IoT”.The methodology begins with an overview of recent advances in FL and the IoT,followed by a discussion of how these two technologies can be integrated.To be more specific,we examine and evaluate the capabilities of FL by talking about communication protocols,frameworks and architecture.We then present a comprehensive analysis of the use of FL in a number of key IoT applications,including smart healthcare,smart transportation,smart cities,smart industry,smart finance,and smart agriculture.The key findings from this analysis of FL IoT services and applications are also presented.Finally,we performed a comparative analysis with FL IID(independent and identical data)and non-ID,traditional centralized deep learning(DL)approaches.We concluded that FL has better performance,especially in terms of privacy protection and resource utilization.FL is excellent for preserving privacy becausemodel training takes place on individual devices or edge nodes,eliminating the need for centralized data aggregation,which poses significant privacy risks.To facilitate development in this rapidly evolving field,the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.展开更多
Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than ot...Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers.展开更多
In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and...In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.展开更多
The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There ...The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.展开更多
The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise t...The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.展开更多
Blockchain technology has been extensively studied over the past decade as a foundation for decentralized information-sharing platforms due to its promising potential.Despite the success of existing blockchain archite...Blockchain technology has been extensively studied over the past decade as a foundation for decentralized information-sharing platforms due to its promising potential.Despite the success of existing blockchain architectures like Bitcoin,Ethereum,Filecoin,Hyperledger Fabric,BCOS,and BCS,current blockchain applications are still quite limited.Blockchain struggles with scenarios requiring high-speed transactions(e.g.,online markets)or large data storage(e.g.,video services)due to consensus efficiency limitations.Security restrictions pose risks to investors in blockchain-based economic systems(e.g.,DeFi),deterring current and potential investors.Privacy protection challenges make it difficult to involve sensitive data in blockchain applications.展开更多
This work aims to implement expert and collaborative group recommendation services through an analysis of expertise and network relations NTIS. First of all, expertise database has been constructed by extracting keywo...This work aims to implement expert and collaborative group recommendation services through an analysis of expertise and network relations NTIS. First of all, expertise database has been constructed by extracting keywords after indexing national R&D information in Korea (human resources, project and outcome) and applying expertise calculation algorithm. In consideration of the characteristics of national R&D information, weight values have been selected. Then, expertise points were calculated by applying weighted values. In addition, joint research and collaborative relations were implemented in a knowledge map format through network analysis using national R&D information.展开更多
Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates...Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.展开更多
This paper investigates the application ofmachine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely;Z-S...This paper investigates the application ofmachine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely;Z-Score incorporated with GreyWolf Optimization(GWO)as well as Interquartile Range(IQR)coupled with Ant Colony Optimization(ACO).Using a performance index,it is shown that when compared with the Z-Score and GWO with AdaBoost,the IQR and ACO,with AdaBoost are not very accurate(89.0%vs.86.0%)and less discriminative(Area Under the Curve(AUC)score of 93.0%vs.91.0%).The Z-Score and GWO methods also outperformed the others in terms of precision,scoring 89.0%;and the recall was also found to be satisfactory,scoring 90.0%.Thus,the paper helps to reveal various specific benefits and drawbacks associated with different outlier detection and feature selection techniques,which can be important to consider in further improving various aspects of diagnostics in cardiovascular health.Collectively,these findings can enhance the knowledge of heart disease prediction and patient treatment using enhanced and innovativemachine learning(ML)techniques.These findings when combined improve patient therapy knowledge and cardiac disease prediction through the use of cutting-edge and improved machine learning approaches.This work lays the groundwork for more precise diagnosis models by highlighting the benefits of combining multiple optimization methodologies.Future studies should focus on maximizing patient outcomes and model efficacy through research on these combinations.展开更多
Redundancy,correlation,feature irrelevance,and missing samples are just a few problems that make it difficult to analyze software defect data.Additionally,it might be challenging to maintain an even distribution of da...Redundancy,correlation,feature irrelevance,and missing samples are just a few problems that make it difficult to analyze software defect data.Additionally,it might be challenging to maintain an even distribution of data relating to both defective and non-defective software.The latter software class’s data are predominately present in the dataset in the majority of experimental situations.The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification.Besides the successful feature selection approach,a novel variant of the ensemble learning technique is analyzed to address the challenges of feature redundancy and data imbalance,providing robustness in the classification process.To overcome these problems and lessen their impact on the fault classification performance,authors carefully integrate effective feature selection with ensemble learning models.Forward selection demonstrates that a significant area under the receiver operating curve(ROC)can be attributed to only a small subset of features.The Greedy forward selection(GFS)technique outperformed Pearson’s correlation method when evaluating feature selection techniques on the datasets.Ensemble learners,such as random forests(RF)and the proposed average probability ensemble(APE),demonstrate greater resistance to the impact of weak features when compared to weighted support vector machines(W-SVMs)and extreme learning machines(ELM).Furthermore,in the case of the NASA and Java datasets,the enhanced average probability ensemble model,which incorporates the Greedy forward selection technique with the average probability ensemble model,achieved remarkably high accuracy for the area under the ROC.It approached a value of 1.0,indicating exceptional performance.This review emphasizes the importance of meticulously selecting attributes in a software dataset to accurately classify damaged components.In addition,the suggested ensemble learning model successfully addressed the aforementioned problems with software data and produced outstanding classification performance.展开更多
Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ...Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ML classifier algorithms to identify CKD early.This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California,UC Irvine Machine Learning repository.The research introduces TrioNet,an ensemble model combining extreme gradient boosting,random forest,and extra tree classifier,which excels in providing highly accurate predictions for CKD.Furthermore,K nearest neighbor(KNN)imputer is utilized to deal withmissing values while synthetic minority oversampling(SMOTE)is used for class-imbalance problems.To ascertain the efficacy of the proposed model,a comprehensive comparative analysis is conducted with various machine learning models.The proposed TrioNet using KNN imputer and SMOTE outperformed other models with 98.97%accuracy for detectingCKD.This in-depth analysis demonstrates the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD.展开更多
BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exo...BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.展开更多
Considering the quality of life, manpower, and expenditure, an IoT-based health monitoring system has been proposed and implemented. Devices are placed on the human body to collect data, which is then uploaded to an o...Considering the quality of life, manpower, and expenditure, an IoT-based health monitoring system has been proposed and implemented. Devices are placed on the human body to collect data, which is then uploaded to an online data server. Specialist doctors can access this data as needed, allowing them to assess the patient’s initial condition and provide advice at any time. This approach enhances the quality and reach of health services. The module, designed and installed using modern technology, minimizes latency and maximizes data accuracy while reducing delay and battery drain. An accompanying app motivates public acceptance and ease of use. Various sensors, including ECG, SpO2, gyroscope, PIR, temperature-humidity, and BP, collect data processed by an Arduino microcontroller. Data transmission is handled by a WiFi module, with ThingSpeak and Google Sheets used for data processing and storage. The system has been fully tested, and patient data from two hospitals compared with the proposed model shows 97% accuracy.展开更多
Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the s...Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.展开更多
The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations im...The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.展开更多
Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present wi...Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.展开更多
基金the Deanship of Graduate Studies and Scientific Research at Qassim University for financial support(QU-APC-2024-9/1).
文摘Control signaling is mandatory for the operation and management of all types of communication networks,including the Third Generation Partnership Project(3GPP)mobile broadband networks.However,they consume important and scarce network resources such as bandwidth and processing power.There have been several reports of these control signaling turning into signaling storms halting network operations and causing the respective Telecom companies big financial losses.This paper draws its motivation from such real network disaster incidents attributed to signaling storms.In this paper,we present a thorough survey of the causes,of the signaling storm problems in 3GPP-based mobile broadband networks and discuss in detail their possible solutions and countermeasures.We provide relevant analytical models to help quantify the effect of the potential causes and benefits of their corresponding solutions.Another important contribution of this paper is the comparison of the possible causes and solutions/countermeasures,concerning their effect on several important network aspects such as architecture,additional signaling,fidelity,etc.,in the form of a table.This paper presents an update and an extension of our earlier conference publication.To our knowledge,no similar survey study exists on the subject.
基金supported in part by the Natural Science Foundation of Jiangsu Province in China under grant No.BK20191475the fifth phase of“333 Project”scientific research funding project of Jiangsu Province in China under grant No.BRA2020306the Qing Lan Project of Jiangsu Province in China under grant No.2019.
文摘In traditional digital twin communication system testing,we can apply test cases as completely as possible in order to ensure the correctness of the system implementation,and even then,there is no guarantee that the digital twin communication system implementation is completely correct.Formal verification is currently recognized as a method to ensure the correctness of software system for communication in digital twins because it uses rigorous mathematical methods to verify the correctness of systems for communication in digital twins and can effectively help system designers determine whether the system is designed and implemented correctly.In this paper,we use the interactive theorem proving tool Isabelle/HOL to construct the formal model of the X86 architecture,and to model the related assembly instructions.The verification result shows that the system states obtained after the operations of relevant assembly instructions is consistent with the expected states,indicating that the system meets the design expectations.
文摘The recent development of the Internet of Things(IoTs)resulted in the growth of IoT-based DDoS attacks.The detection of Botnet in IoT systems implements advanced cybersecurity measures to detect and reduce malevolent botnets in interconnected devices.Anomaly detection models evaluate transmission patterns,network traffic,and device behaviour to detect deviations from usual activities.Machine learning(ML)techniques detect patterns signalling botnet activity,namely sudden traffic increase,unusual command and control patterns,or irregular device behaviour.In addition,intrusion detection systems(IDSs)and signature-based techniques are applied to recognize known malware signatures related to botnets.Various ML and deep learning(DL)techniques have been developed to detect botnet attacks in IoT systems.To overcome security issues in an IoT environment,this article designs a gorilla troops optimizer with DL-enabled botnet attack detection and classification(GTODL-BADC)technique.The GTODL-BADC technique follows feature selection(FS)with optimal DL-based classification for accomplishing security in an IoT environment.For data preprocessing,the min-max data normalization approach is primarily used.The GTODL-BADC technique uses the GTO algorithm to select features and elect optimal feature subsets.Moreover,the multi-head attention-based long short-term memory(MHA-LSTM)technique was applied for botnet detection.Finally,the tree seed algorithm(TSA)was used to select the optimum hyperparameter for the MHA-LSTM method.The experimental validation of the GTODL-BADC technique can be tested on a benchmark dataset.The simulation results highlighted that the GTODL-BADC technique demonstrates promising performance in the botnet detection process.
基金support from the Deanship for Research&Innovation,Ministry of Education in Saudi Arabia,under the Auspices of Project Number:IFP22UQU4281768DSR122.
文摘Colletotrichum kahawae(Coffee Berry Disease)spreads through spores that can be carried by wind,rain,and insects affecting coffee plantations,and causes 80%yield losses and poor-quality coffee beans.The deadly disease is hard to control because wind,rain,and insects carry spores.Colombian researchers utilized a deep learning system to identify CBD in coffee cherries at three growth stages and classify photographs of infected and uninfected cherries with 93%accuracy using a random forest method.If the dataset is too small and noisy,the algorithm may not learn data patterns and generate accurate predictions.To overcome the existing challenge,early detection of Colletotrichum Kahawae disease in coffee cherries requires automated processes,prompt recognition,and accurate classifications.The proposed methodology selects CBD image datasets through four different stages for training and testing.XGBoost to train a model on datasets of coffee berries,with each image labeled as healthy or diseased.Once themodel is trained,SHAP algorithmto figure out which features were essential formaking predictions with the proposed model.Some of these characteristics were the cherry’s colour,whether it had spots or other damage,and how big the Lesions were.Virtual inception is important for classification to virtualize the relationship between the colour of the berry is correlated with the presence of disease.To evaluate themodel’s performance andmitigate excess fitting,a 10-fold cross-validation approach is employed.This involves partitioning the dataset into ten subsets,training the model on each subset,and evaluating its performance.In comparison to other contemporary methodologies,the model put forth achieved an accuracy of 98.56%.
文摘The proliferation of IoT devices requires innovative approaches to gaining insights while preserving privacy and resources amid unprecedented data generation.However,FL development for IoT is still in its infancy and needs to be explored in various areas to understand the key challenges for deployment in real-world scenarios.The paper systematically reviewed the available literature using the PRISMA guiding principle.The study aims to provide a detailed overview of the increasing use of FL in IoT networks,including the architecture and challenges.A systematic review approach is used to collect,categorize and analyze FL-IoT-based articles.Asearch was performed in the IEEE,Elsevier,Arxiv,ACM,and WOS databases and 92 articles were finally examined.Inclusion measures were published in English and with the keywords“FL”and“IoT”.The methodology begins with an overview of recent advances in FL and the IoT,followed by a discussion of how these two technologies can be integrated.To be more specific,we examine and evaluate the capabilities of FL by talking about communication protocols,frameworks and architecture.We then present a comprehensive analysis of the use of FL in a number of key IoT applications,including smart healthcare,smart transportation,smart cities,smart industry,smart finance,and smart agriculture.The key findings from this analysis of FL IoT services and applications are also presented.Finally,we performed a comparative analysis with FL IID(independent and identical data)and non-ID,traditional centralized deep learning(DL)approaches.We concluded that FL has better performance,especially in terms of privacy protection and resource utilization.FL is excellent for preserving privacy becausemodel training takes place on individual devices or edge nodes,eliminating the need for centralized data aggregation,which poses significant privacy risks.To facilitate development in this rapidly evolving field,the insights presented are intended to help practitioners and researchers navigate the complex terrain of FL and IoT.
基金supported by the Project SP2023/074 Application of Machine and Process Control Advanced Methods supported by the Ministry of Education,Youth and Sports,Czech Republic.
文摘Computer vision(CV)was developed for computers and other systems to act or make recommendations based on visual inputs,such as digital photos,movies,and other media.Deep learning(DL)methods are more successful than other traditional machine learning(ML)methods inCV.DL techniques can produce state-of-the-art results for difficult CV problems like picture categorization,object detection,and face recognition.In this review,a structured discussion on the history,methods,and applications of DL methods to CV problems is presented.The sector-wise presentation of applications in this papermay be particularly useful for researchers in niche fields who have limited or introductory knowledge of DL methods and CV.This review will provide readers with context and examples of how these techniques can be applied to specific areas.A curated list of popular datasets and a brief description of them are also included for the benefit of readers.
文摘In healthcare,the persistent challenge of arrhythmias,a leading cause of global mortality,has sparked extensive research into the automation of detection using machine learning(ML)algorithms.However,traditional ML and AutoML approaches have revealed their limitations,notably regarding feature generalization and automation efficiency.This glaring research gap has motivated the development of AutoRhythmAI,an innovative solution that integrates both machine and deep learning to revolutionize the diagnosis of arrhythmias.Our approach encompasses two distinct pipelines tailored for binary-class and multi-class arrhythmia detection,effectively bridging the gap between data preprocessing and model selection.To validate our system,we have rigorously tested AutoRhythmAI using a multimodal dataset,surpassing the accuracy achieved using a single dataset and underscoring the robustness of our methodology.In the first pipeline,we employ signal filtering and ML algorithms for preprocessing,followed by data balancing and split for training.The second pipeline is dedicated to feature extraction and classification,utilizing deep learning models.Notably,we introduce the‘RRI-convoluted trans-former model’as a novel addition for binary-class arrhythmias.An ensemble-based approach then amalgamates all models,considering their respective weights,resulting in an optimal model pipeline.In our study,the VGGRes Model achieved impressive results in multi-class arrhythmia detection,with an accuracy of 97.39%and firm performance in precision(82.13%),recall(31.91%),and F1-score(82.61%).In the binary-class task,the proposed model achieved an outstanding accuracy of 96.60%.These results highlight the effectiveness of our approach in improving arrhythmia detection,with notably high accuracy and well-balanced performance metrics.
基金supported by project TRANSACT funded under H2020-EU.2.1.1.-INDUSTRIAL LEADERSHIP-Leadership in Enabling and Industrial Technologies-Information and Communication Technologies(Grant Agreement ID:101007260).
文摘The widespread and growing interest in the Internet of Things(IoT)may be attributed to its usefulness in many different fields.Physical settings are probed for data,which is then transferred via linked networks.There are several hurdles to overcome when putting IoT into practice,from managing server infrastructure to coordinating the use of tiny sensors.When it comes to deploying IoT,everyone agrees that security is the biggest issue.This is due to the fact that a large number of IoT devices exist in the physicalworld and thatmany of themhave constrained resources such as electricity,memory,processing power,and square footage.This research intends to analyse resource-constrained IoT devices,including RFID tags,sensors,and smart cards,and the issues involved with protecting them in such restricted circumstances.Using lightweight cryptography,the information sent between these gadgets may be secured.In order to provide a holistic picture,this research evaluates and contrasts well-known algorithms based on their implementation cost,hardware/software efficiency,and attack resistance features.We also emphasised how essential lightweight encryption is for striking a good cost-to-performance-to-security ratio.
基金MMU Postdoctoral and Research Fellow(Account:MMUI/230023.02).
文摘The context of recognizing handwritten city names,this research addresses the challenges posed by the manual inscription of Bangladeshi city names in the Bangla script.In today’s technology-driven era,where precise tools for reading handwritten text are essential,this study focuses on leveraging deep learning to understand the intricacies of Bangla handwriting.The existing dearth of dedicated datasets has impeded the progress of Bangla handwritten city name recognition systems,particularly in critical areas such as postal automation and document processing.Notably,no prior research has specifically targeted the unique needs of Bangla handwritten city name recognition.To bridge this gap,the study collects real-world images from diverse sources to construct a comprehensive dataset for Bangla Hand Written City name recognition.The emphasis on practical data for system training enhances accuracy.The research further conducts a comparative analysis,pitting state-of-the-art(SOTA)deep learning models,including EfficientNetB0,VGG16,ResNet50,DenseNet201,InceptionV3,and Xception,against a custom Convolutional Neural Networks(CNN)model named“Our CNN.”The results showcase the superior performance of“Our CNN,”with a test accuracy of 99.97% and an outstanding F1 score of 99.95%.These metrics underscore its potential for automating city name recognition,particularly in postal services.The study concludes by highlighting the significance of meticulous dataset curation and the promising outlook for custom CNN architectures.It encourages future research avenues,including dataset expansion,algorithm refinement,exploration of recurrent neural networks and attention mechanisms,real-world deployment of models,and extension to other regional languages and scripts.These recommendations offer exciting possibilities for advancing the field of handwritten recognition technology and hold practical implications for enhancing global postal services.
文摘Blockchain technology has been extensively studied over the past decade as a foundation for decentralized information-sharing platforms due to its promising potential.Despite the success of existing blockchain architectures like Bitcoin,Ethereum,Filecoin,Hyperledger Fabric,BCOS,and BCS,current blockchain applications are still quite limited.Blockchain struggles with scenarios requiring high-speed transactions(e.g.,online markets)or large data storage(e.g.,video services)due to consensus efficiency limitations.Security restrictions pose risks to investors in blockchain-based economic systems(e.g.,DeFi),deterring current and potential investors.Privacy protection challenges make it difficult to involve sensitive data in blockchain applications.
基金Project(N-12-NM-LU01-C01) supported by Construction of NTIS (National Science & Technology Information Service) Program Funded by the National Science & Technology Commission (NSTC), Korea
文摘This work aims to implement expert and collaborative group recommendation services through an analysis of expertise and network relations NTIS. First of all, expertise database has been constructed by extracting keywords after indexing national R&D information in Korea (human resources, project and outcome) and applying expertise calculation algorithm. In consideration of the characteristics of national R&D information, weight values have been selected. Then, expertise points were calculated by applying weighted values. In addition, joint research and collaborative relations were implemented in a knowledge map format through network analysis using national R&D information.
文摘Effort estimation plays a crucial role in software development projects,aiding in resource allocation,project planning,and risk management.Traditional estimation techniques often struggle to provide accurate estimates due to the complex nature of software projects.In recent years,machine learning approaches have shown promise in improving the accuracy of effort estimation models.This study proposes a hybrid model that combines Long Short-Term Memory(LSTM)and Random Forest(RF)algorithms to enhance software effort estimation.The proposed hybrid model takes advantage of the strengths of both LSTM and RF algorithms.To evaluate the performance of the hybrid model,an extensive set of software development projects is used as the experimental dataset.The experimental results demonstrate that the proposed hybrid model outperforms traditional estimation techniques in terms of accuracy and reliability.The integration of LSTM and RF enables the model to efficiently capture temporal dependencies and non-linear interactions in the software development data.The hybrid model enhances estimation accuracy,enabling project managers and stakeholders to make more precise predictions of effort needed for upcoming software projects.
文摘This paper investigates the application ofmachine learning to develop a response model to cardiovascular problems and the use of AdaBoost which incorporates an application of Outlier Detection methodologies namely;Z-Score incorporated with GreyWolf Optimization(GWO)as well as Interquartile Range(IQR)coupled with Ant Colony Optimization(ACO).Using a performance index,it is shown that when compared with the Z-Score and GWO with AdaBoost,the IQR and ACO,with AdaBoost are not very accurate(89.0%vs.86.0%)and less discriminative(Area Under the Curve(AUC)score of 93.0%vs.91.0%).The Z-Score and GWO methods also outperformed the others in terms of precision,scoring 89.0%;and the recall was also found to be satisfactory,scoring 90.0%.Thus,the paper helps to reveal various specific benefits and drawbacks associated with different outlier detection and feature selection techniques,which can be important to consider in further improving various aspects of diagnostics in cardiovascular health.Collectively,these findings can enhance the knowledge of heart disease prediction and patient treatment using enhanced and innovativemachine learning(ML)techniques.These findings when combined improve patient therapy knowledge and cardiac disease prediction through the use of cutting-edge and improved machine learning approaches.This work lays the groundwork for more precise diagnosis models by highlighting the benefits of combining multiple optimization methodologies.Future studies should focus on maximizing patient outcomes and model efficacy through research on these combinations.
文摘Redundancy,correlation,feature irrelevance,and missing samples are just a few problems that make it difficult to analyze software defect data.Additionally,it might be challenging to maintain an even distribution of data relating to both defective and non-defective software.The latter software class’s data are predominately present in the dataset in the majority of experimental situations.The objective of this review study is to demonstrate the effectiveness of combining ensemble learning and feature selection in improving the performance of defect classification.Besides the successful feature selection approach,a novel variant of the ensemble learning technique is analyzed to address the challenges of feature redundancy and data imbalance,providing robustness in the classification process.To overcome these problems and lessen their impact on the fault classification performance,authors carefully integrate effective feature selection with ensemble learning models.Forward selection demonstrates that a significant area under the receiver operating curve(ROC)can be attributed to only a small subset of features.The Greedy forward selection(GFS)technique outperformed Pearson’s correlation method when evaluating feature selection techniques on the datasets.Ensemble learners,such as random forests(RF)and the proposed average probability ensemble(APE),demonstrate greater resistance to the impact of weak features when compared to weighted support vector machines(W-SVMs)and extreme learning machines(ELM).Furthermore,in the case of the NASA and Java datasets,the enhanced average probability ensemble model,which incorporates the Greedy forward selection technique with the average probability ensemble model,achieved remarkably high accuracy for the area under the ROC.It approached a value of 1.0,indicating exceptional performance.This review emphasizes the importance of meticulously selecting attributes in a software dataset to accurately classify damaged components.In addition,the suggested ensemble learning model successfully addressed the aforementioned problems with software data and produced outstanding classification performance.
基金funded by Princess Nourah bint Abdulrahman University Researchers Supporting Project Number PNURSP2024R333,Princess Nourah bint Abdulrahman University,Riyadh,Saudi Arabia.
文摘Chronic kidney disease(CKD)is a major health concern today,requiring early and accurate diagnosis.Machine learning has emerged as a powerful tool for disease detection,and medical professionals are increasingly using ML classifier algorithms to identify CKD early.This study explores the application of advanced machine learning techniques on a CKD dataset obtained from the University of California,UC Irvine Machine Learning repository.The research introduces TrioNet,an ensemble model combining extreme gradient boosting,random forest,and extra tree classifier,which excels in providing highly accurate predictions for CKD.Furthermore,K nearest neighbor(KNN)imputer is utilized to deal withmissing values while synthetic minority oversampling(SMOTE)is used for class-imbalance problems.To ascertain the efficacy of the proposed model,a comprehensive comparative analysis is conducted with various machine learning models.The proposed TrioNet using KNN imputer and SMOTE outperformed other models with 98.97%accuracy for detectingCKD.This in-depth analysis demonstrates the model’s capabilities and underscores its potential as a valuable tool in the diagnosis of CKD.
文摘BACKGROUND The treatment of acute respiratory distress syndrome(ARDS)complicated by sepsis syndrome(SS)remains challenging.AIM To investigate whether combined adipose-derived mesenchymal-stem-cells(ADMSCs)-derived exosome(EXAD)and exogenous mitochondria(mitoEx)protect the lung from ARDS complicated by SS.METHODS In vitro study,including L2 cells treated with lipopolysaccharide(LPS)and in vivo study including male-adult-SD rats categorized into groups 1(sham-operated-control),2(ARDS-SS),3(ARDS-SS+EXAD),4(ARDS-SS+mitoEx),and 5(ARDS-SS+EXAD+mitoEx),were included in the present study.RESULTS In vitro study showed an abundance of mitoEx found in recipient-L2 cells,resulting in significantly higher mitochondrial-cytochrome-C,adenosine triphosphate and relative mitochondrial DNA levels(P<0.001).The protein levels of inflammation[interleukin(IL)-1β/tumor necrosis factor(TNF)-α/nuclear factor-κB/toll-like receptor(TLR)-4/matrix-metalloproteinase(MMP)-9/oxidative-stress(NOX-1/NOX-2)/apoptosis(cleaved-caspase3/cleaved-poly(ADP-ribose)polymerase)]were significantly attenuated in lipopolysaccharide(LPS)-treated L2 cells with EXAD treatment than without EXAD treatment,whereas the protein expressions of cellular junctions[occluding/β-catenin/zonula occludens(ZO)-1/E-cadherin]exhibited an opposite pattern of inflam-mation(all P<0.001).Animals were euthanized by 72 h post-48 h-ARDS induction,and lung tissues were harvested.By 72 h,flow cytometric analysis of bronchoalveolar lavage fluid demonstrated that the levels of inflam-matory cells(Ly6G+/CD14+/CD68+/CD11b/c+/myeloperoxidase+)and albumin were lowest in group 1,highest in group 2,and significantly higher in groups 3 and 4 than in group 5(all P<0.0001),whereas arterial oxygen-saturation(SaO2%)displayed an opposite pattern of albumin among the groups.Histopathological findings of lung injury/fibrosis area and inflammatory/DNA-damaged markers(CD68+/γ-H2AX)displayed an identical pattern of SaO2%among the groups(all P<0.0001).The protein expressions of inflammatory(TLR-4/MMP-9/IL-1β/TNF-α)/oxidative stress(NOX-1/NOX-2/p22phox/oxidized protein)/mitochondrial-damaged(cytosolic-cytochrome-C/dynamin-related protein 1)/autophagic(beclin-1/Atg-5/ratio of LC3B-II/LC3B-I)biomarkers exhibited a similar manner,whereas antioxidants[nuclear respiratory factor(Nrf)-1/Nrf-2]/cellular junctions(ZO-1/E-cadherin)/mitochondrial electron transport chain(complex I-V)exhibited an opposite manner of albumin among the groups(all P<0.0001).CONCLUSION Combined EXAD-mitoEx therapy was better than merely one for protecting the lung against ARDS-SS induced injury.
文摘Considering the quality of life, manpower, and expenditure, an IoT-based health monitoring system has been proposed and implemented. Devices are placed on the human body to collect data, which is then uploaded to an online data server. Specialist doctors can access this data as needed, allowing them to assess the patient’s initial condition and provide advice at any time. This approach enhances the quality and reach of health services. The module, designed and installed using modern technology, minimizes latency and maximizes data accuracy while reducing delay and battery drain. An accompanying app motivates public acceptance and ease of use. Various sensors, including ECG, SpO2, gyroscope, PIR, temperature-humidity, and BP, collect data processed by an Arduino microcontroller. Data transmission is handled by a WiFi module, with ThingSpeak and Google Sheets used for data processing and storage. The system has been fully tested, and patient data from two hospitals compared with the proposed model shows 97% accuracy.
文摘Lower back pain is one of the most common medical problems in the world and it is experienced by a huge percentage of people everywhere.Due to its ability to produce a detailed view of the soft tissues,including the spinal cord,nerves,intervertebral discs,and vertebrae,Magnetic Resonance Imaging is thought to be the most effective method for imaging the spine.The semantic segmentation of vertebrae plays a major role in the diagnostic process of lumbar diseases.It is difficult to semantically partition the vertebrae in Magnetic Resonance Images from the surrounding variety of tissues,including muscles,ligaments,and intervertebral discs.U-Net is a powerful deep-learning architecture to handle the challenges of medical image analysis tasks and achieves high segmentation accuracy.This work proposes a modified U-Net architecture namely MU-Net,consisting of the Meijering convolutional layer that incorporates the Meijering filter to perform the semantic segmentation of lumbar vertebrae L1 to L5 and sacral vertebra S1.Pseudo-colour mask images were generated and used as ground truth for training the model.The work has been carried out on 1312 images expanded from T1-weighted mid-sagittal MRI images of 515 patients in the Lumbar Spine MRI Dataset publicly available from Mendeley Data.The proposed MU-Net model for the semantic segmentation of the lumbar vertebrae gives better performance with 98.79%of pixel accuracy(PA),98.66%of dice similarity coefficient(DSC),97.36%of Jaccard coefficient,and 92.55%mean Intersection over Union(mean IoU)metrics using the mentioned dataset.
文摘The Internet of things(IoT)is a wireless network designed to perform specific tasks and plays a crucial role in various fields such as environmental monitoring,surveillance,and healthcare.To address the limitations imposed by inadequate resources,energy,and network scalability,this type of network relies heavily on data aggregation and clustering algorithms.Although various conventional studies have aimed to enhance the lifespan of a network through robust systems,they do not always provide optimal efficiency for real-time applications.This paper presents an approach based on state-of-the-art machine-learning methods.In this study,we employed a novel approach that combines an extended version of principal component analysis(PCA)and a reinforcement learning algorithm to achieve efficient clustering and data reduction.The primary objectives of this study are to enhance the service life of a network,reduce energy usage,and improve data aggregation efficiency.We evaluated the proposed methodology using data collected from sensors deployed in agricultural fields for crop monitoring.Our proposed approach(PQL)was compared to previous studies that utilized adaptive Q-learning(AQL)and regional energy-aware clustering(REAC).Our study outperformed in terms of both network longevity and energy consumption and established a fault-tolerant network.
基金the“Intelligent Recognition Industry Service Center”as part of the Featured Areas Research Center Program under the Higher Education Sprout Project by the Ministry of Education(MOE)in Taiwan,and the National Science and Technology Council,Taiwan,under grants 113-2221-E-224-041 and 113-2622-E-224-002.Additionally,partial support was provided by Isuzu Optics Corporation.
文摘Liver cancer remains a leading cause of mortality worldwide,and precise diagnostic tools are essential for effective treatment planning.Liver Tumors(LTs)vary significantly in size,shape,and location,and can present with tissues of similar intensities,making automatically segmenting and classifying LTs from abdominal tomography images crucial and challenging.This review examines recent advancements in Liver Segmentation(LS)and Tumor Segmentation(TS)algorithms,highlighting their strengths and limitations regarding precision,automation,and resilience.Performance metrics are utilized to assess key detection algorithms and analytical methods,emphasizing their effectiveness and relevance in clinical contexts.The review also addresses ongoing challenges in liver tumor segmentation and identification,such as managing high variability in patient data and ensuring robustness across different imaging conditions.It suggests directions for future research,with insights into technological advancements that can enhance surgical planning and diagnostic accuracy by comparing popular methods.This paper contributes to a comprehensive understanding of current liver tumor detection techniques,provides a roadmap for future innovations,and improves diagnostic and therapeutic outcomes for liver cancer by integrating recent progress with remaining challenges.