Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In t...Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In this study,the effect of CFP on the microstructural refinement of AM50 rods is investigated in terms of particle size and morphology of the eutectic and secondary phases originally present in the base material,in particular the eutecticβ-Mg_(17)Al_(12)and Al-Mn phases.For that purpose,as-cast and solution heat-treated base material and processed samples were analyzed.The Al_(8)Mn_(5) intermetallic phase was identified as the main secondary phase present in all samples before and after the processing.A notorious refinement of these particles was observed,starting from particles with an average equivalent length of a few micrometers to around 560 nm after the processing.The refinement of the secondary phase refinement is attributed to a mechanism analogous to the attrition comminution,where the combination of temperature increase and shearing of the material enables the continuous breaking of the brittle intermetallic particles into smaller pieces.As for the eutectic phase,the results indicate the presence of the partially divorcedβ-Mg_(17)Al_(12)particles exclusively in the as-cast base material,indicating that no further phase transformations regarding the eutectic phase,such as dynamic precipitation,occurred after the CFP.In the case of the processed as-cast material analyzed after the CFP,the thermal energy generated during the processing led to temperature values above the solvus limit of the eutectic phase,which associated with the mechanical breakage of the particles,enabled the complete dissolution of this phase.Therefore,CFP was successfully demonstrated to promote an extensive microstructure refinement in multiple aspects,in terms of grain sizes of theα-Mg phase and presence and morphology of the Al-Mn and eutecticβ-Mg_(17)Al_(12).展开更多
Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.T...Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.To address this research question,we frame our analysis in terms of variants of the popular heterogeneous autoregressive realized volatility(HAR-RV)model.To estimate the models,we use quantile-regression and quantile machine learning(Lasso)estimators.Our estimation results highlights the dif-ferential effects of economic conditions on the quantiles of the conditional distribution of realized volatility.Using weekly data for the period April 1987 to December 2021,we document evidence of predictability at a biweekly and monthly horizon.展开更多
With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg was...With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage.Owing to the high reaction enthalpy,the moderate pressure and appropriate temperature conditions,the broad abundance and the recyclability,the Mg/Al alloy is perfectly suitable for this purpose.As further development of a previous work,in which the performance of recycled Mg/Al waste was presented,a kinetic model for hydro-and dehydrogenation is derived in this study.Temperature and pressure dependencies are determined,as well as the rate limiting step of the reaction.First experiments are carried out in an autoclave with a scaled-up powder mass,which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions.展开更多
The electrification of powertrains leads to an increasing diversification of powertrain configurations. Each single configuration has its specific advantages which appear depending on the usage profile. To find the us...The electrification of powertrains leads to an increasing diversification of powertrain configurations. Each single configuration has its specific advantages which appear depending on the usage profile. To find the usage based optimal powertrain in consideration of a variety of evaluation criteria, the powertrains have to be optimized for the usage profile and characteristics have to be extracted from the usage profile. The carbon dioxide emissions of the optimized powertrains and usage based criteria are used in a multi-criteria decision analysis to determine the optimal powertrain for a specific usage profile. The description of characteristic maps forms the objective function of a minimization problem. The determined carbon dioxide emissions are one criterion in a multi-criteria decision process. All considered criteria are at least partly objective so that subjective ratings are eliminated as far as possible. The result is an optimized powertrain for a desired usage under the consideration of objective criteria that are extracted from the usage profile.展开更多
Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally.In the investigation,an emphasis is placed upon the external flue gas recirculation,which is...Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally.In the investigation,an emphasis is placed upon the external flue gas recirculation,which is a promising technology for increasing the efficiency of the carbon capture and storage process,which,however,can change the combustion behaviour significantly.A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas.Flames are also investigated numerically using the open source CFD software OpenFOAM.In the numerical simulations,a laminar flamelet model based on mixture fraction and reaction progress variable is adopted.As turbulence model,the SST model is used within a URANS concept.Computational results are compared with the experimental data,where a fair agreement is observed.展开更多
The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implantapplications. Especially the influence of the sintering processing necessary for the consolidation of thefinished part i...The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implantapplications. Especially the influence of the sintering processing necessary for the consolidation of thefinished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powdermaterial was sintered using different sintering support bottom plate materials to evaluate the possibilityof iron impurity pick up during sintering. It can be shown that iron pick up took place from the steelbottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer wasused and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result ofthis study a new bottom plate material not harming the sintering and the biodegradation performance ofthe as sintered material, namely a carbon plate material, was found.展开更多
Intense phase-locked terahertz(THz)pulses are the bedrock of THz lightwave electronics,where the carrier field creates a transient bias to control electrons on sub-cycle time scales.Key applications such as THz scanni...Intense phase-locked terahertz(THz)pulses are the bedrock of THz lightwave electronics,where the carrier field creates a transient bias to control electrons on sub-cycle time scales.Key applications such as THz scanning tunnelling microscopy or electronic devices operating at optical clock rates call for ultimately short,almost unipolar waveforms,at megahertz(MHz)repetition rates.Here,we present a flexible and scalable scheme for the generation of strong phase-locked THz pulses based on shift currents in type-ll-aligned epitaxial semiconductor heterostructures.The measured THz waveforms exhibit only 0.45 optical cycles at their centre frequency within the full width at half maximum of the intensity envelope,peak fields above 1.1 kVcm^(-1) and spectral components up to the mid-infrared,at a repetition rate of 4 MHz.The only positive half-cycle of this waveform exceeds all negative half-cycles by almost four times,which is unexpected from shift currents alone.Our detailed analysis reveals that local charging dynamics induces the pronounced positive THz-emission peak as electrons and holes approach charge neutrality after separation by the optical pump pulse,also enabling ultrabroadband operation.Our unipolar emitters mark a milestone for flexibly scalable,next-generation high-repetition-rate sources of intense and strongly asymmetric electric field transients.展开更多
文摘Constrained Friction Processing(CFP)is a novel solid-state processing technique suitable for lightweight materials,such Mg-and Al-alloys.The technique enables grain size refinement to fine or even ultrafine scale.In this study,the effect of CFP on the microstructural refinement of AM50 rods is investigated in terms of particle size and morphology of the eutectic and secondary phases originally present in the base material,in particular the eutecticβ-Mg_(17)Al_(12)and Al-Mn phases.For that purpose,as-cast and solution heat-treated base material and processed samples were analyzed.The Al_(8)Mn_(5) intermetallic phase was identified as the main secondary phase present in all samples before and after the processing.A notorious refinement of these particles was observed,starting from particles with an average equivalent length of a few micrometers to around 560 nm after the processing.The refinement of the secondary phase refinement is attributed to a mechanism analogous to the attrition comminution,where the combination of temperature increase and shearing of the material enables the continuous breaking of the brittle intermetallic particles into smaller pieces.As for the eutectic phase,the results indicate the presence of the partially divorcedβ-Mg_(17)Al_(12)particles exclusively in the as-cast base material,indicating that no further phase transformations regarding the eutectic phase,such as dynamic precipitation,occurred after the CFP.In the case of the processed as-cast material analyzed after the CFP,the thermal energy generated during the processing led to temperature values above the solvus limit of the eutectic phase,which associated with the mechanical breakage of the particles,enabled the complete dissolution of this phase.Therefore,CFP was successfully demonstrated to promote an extensive microstructure refinement in multiple aspects,in terms of grain sizes of theα-Mg phase and presence and morphology of the Al-Mn and eutecticβ-Mg_(17)Al_(12).
文摘Because the U.S.is a major player in the international oil market,it is interesting to study whether aggregate and state-level economic conditions can predict the subse-quent realized volatility of oil price returns.To address this research question,we frame our analysis in terms of variants of the popular heterogeneous autoregressive realized volatility(HAR-RV)model.To estimate the models,we use quantile-regression and quantile machine learning(Lasso)estimators.Our estimation results highlights the dif-ferential effects of economic conditions on the quantiles of the conditional distribution of realized volatility.Using weekly data for the period April 1987 to December 2021,we document evidence of predictability at a biweekly and monthly horizon.
文摘With the increased use of renewable energy sources,the need to store large amounts of energy will become increasingly important in the near future.A cost efficient possibility is to use the reaction of recycled Mg waste with hydrogen as thermo-chemical energy storage.Owing to the high reaction enthalpy,the moderate pressure and appropriate temperature conditions,the broad abundance and the recyclability,the Mg/Al alloy is perfectly suitable for this purpose.As further development of a previous work,in which the performance of recycled Mg/Al waste was presented,a kinetic model for hydro-and dehydrogenation is derived in this study.Temperature and pressure dependencies are determined,as well as the rate limiting step of the reaction.First experiments are carried out in an autoclave with a scaled-up powder mass,which is also used to validate the model by simulating the geometry with the scaled-up experiments at different conditions.
文摘The electrification of powertrains leads to an increasing diversification of powertrain configurations. Each single configuration has its specific advantages which appear depending on the usage profile. To find the usage based optimal powertrain in consideration of a variety of evaluation criteria, the powertrains have to be optimized for the usage profile and characteristics have to be extracted from the usage profile. The carbon dioxide emissions of the optimized powertrains and usage based criteria are used in a multi-criteria decision analysis to determine the optimal powertrain for a specific usage profile. The description of characteristic maps forms the objective function of a minimization problem. The determined carbon dioxide emissions are one criterion in a multi-criteria decision process. All considered criteria are at least partly objective so that subjective ratings are eliminated as far as possible. The result is an optimized powertrain for a desired usage under the consideration of objective criteria that are extracted from the usage profile.
文摘Turbulent reacting flows in a generic swirl gas turbine combustor model are investigated both numerically and experimentally.In the investigation,an emphasis is placed upon the external flue gas recirculation,which is a promising technology for increasing the efficiency of the carbon capture and storage process,which,however,can change the combustion behaviour significantly.A further emphasis is placed upon the investigation of alternative fuels such as biogas and syngas in comparison to the conventional natural gas.Flames are also investigated numerically using the open source CFD software OpenFOAM.In the numerical simulations,a laminar flamelet model based on mixture fraction and reaction progress variable is adopted.As turbulence model,the SST model is used within a URANS concept.Computational results are compared with the experimental data,where a fair agreement is observed.
文摘The study is focussing towards Metal Injection Moulding (MIM) of Mg-alloys for biomedical implantapplications. Especially the influence of the sintering processing necessary for the consolidation of thefinished part is in focus of this study. In doing so, the chosen high strength EZK400 Mg-alloy powdermaterial was sintered using different sintering support bottom plate materials to evaluate the possibilityof iron impurity pick up during sintering. It can be shown that iron pick up took place from the steelbottom plate into the specimen. Despite the fact that a separating boron nitrite (BN) barrier layer wasused and the Mg-Fe phase diagram is not predicting any significant solubility to each other. As a result ofthis study a new bottom plate material not harming the sintering and the biodegradation performance ofthe as sintered material, namely a carbon plate material, was found.
基金We thank M.Furthmeier,I.Laepple and I.Gronwald for assistance.Financial support from the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)through Project ID 422314695032-SFB 1277(Subprojects A01 and B02)Project ID 223848855-SFB 1083(Subproject B2)as well as Research Grant HU1598/8 and Research Grant CH660/8 is acknowledgedThe work in Ann Arbor was supported by the W.M.Keck Foundation,and through NSF DMREF award#2118809.
文摘Intense phase-locked terahertz(THz)pulses are the bedrock of THz lightwave electronics,where the carrier field creates a transient bias to control electrons on sub-cycle time scales.Key applications such as THz scanning tunnelling microscopy or electronic devices operating at optical clock rates call for ultimately short,almost unipolar waveforms,at megahertz(MHz)repetition rates.Here,we present a flexible and scalable scheme for the generation of strong phase-locked THz pulses based on shift currents in type-ll-aligned epitaxial semiconductor heterostructures.The measured THz waveforms exhibit only 0.45 optical cycles at their centre frequency within the full width at half maximum of the intensity envelope,peak fields above 1.1 kVcm^(-1) and spectral components up to the mid-infrared,at a repetition rate of 4 MHz.The only positive half-cycle of this waveform exceeds all negative half-cycles by almost four times,which is unexpected from shift currents alone.Our detailed analysis reveals that local charging dynamics induces the pronounced positive THz-emission peak as electrons and holes approach charge neutrality after separation by the optical pump pulse,also enabling ultrabroadband operation.Our unipolar emitters mark a milestone for flexibly scalable,next-generation high-repetition-rate sources of intense and strongly asymmetric electric field transients.