期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Hyperscale Puts the <i>Sapiens</i>into <i>Homo</i>
1
作者 Ron Cottam Willy Ranson Roger Vounckx 《International Journal of Intelligence Science》 2015年第1期13-36,共24页
The human mind’s evolution owes much to its companion phenomena of intelligence, sapience, wisdom, awareness and consciousness. In this paper we take the concepts of intelligence and sa-pience as the starting point o... The human mind’s evolution owes much to its companion phenomena of intelligence, sapience, wisdom, awareness and consciousness. In this paper we take the concepts of intelligence and sa-pience as the starting point of a route towards elucidation of the conscious mind. There is much disagreement and confusion associated with the word intelligence. A lot of this results from its use in diverse contexts, where it is called upon to represent different ideas and to justify different ar-guments. Addition of the word sapience to the mix merely complicates matters, unless we can relate both of these words to different concepts in a way which acceptably crosses contextual boundaries. We have established a connection between information processing and processor “architecture” which provides just such a linguistic separation, and which is applicable in either a computational or conceptual form to any context. This paper reports the argumentation leading up to a distinction between intelligence and sapience, and relates this distinction to human “cognitive” activities. Information is always contextual. Information processing in a system always takes place between “architectural” scales: intelligence is the “tool” which permits an “overview” of the relevance of individual items of information. System unity presumes a degree of coherence across all the scales of a system: sapience is the “tool” which permits an evaluation of the relevance of both individual items and individual scales of information to a common purpose. This hyperscalar coherence is created through mutual inter-scalar observation, whose recursive nature generates the independence of high-level consciousness, making humans human. We conclude that intelligence and sapience are distinct and necessary properties of all information processing systems, and that the degree of their availability controls a system’s or a human’s cognitive capacity, if not its appli-cation. This establishes intelligence and sapience as prime ancestors of the conscious mind. How-ever, to our knowledge, there is no current mathematical approach which can satisfactorily deal with the native irrationalities of information integration across multiple scales, and therefore of formally modeling the mind. 展开更多
关键词 Hyperscale HIERARCHY INTELLIGENCE Sapience CONSCIOUSNESS
下载PDF
Wafer-level hermetically sealed silicon photonic MEMS
2
作者 Gaehun Jo Pierre Edinger +13 位作者 Simon J.Bleiker Xiacxjing Wang Alain Yuji Takabayashi Hamed Sattari Niels Quack Moises Jezzini Jun Su Lee Peter Verheyen Iman Zand Umar Khan Wim Bogaerts Göran Stemme Kristinn B.Gylfason Frank Niklaus 《Photonics Research》 SCIE EI CAS CSCD 2022年第2期I0001-I0008,共8页
The emerging fields of silicon(Si) photonic micro–electromechanical systems(MEMS) and optomechanics enable a wide range of novel high-performance photonic devices with ultra-low power consumption, such as integrated ... The emerging fields of silicon(Si) photonic micro–electromechanical systems(MEMS) and optomechanics enable a wide range of novel high-performance photonic devices with ultra-low power consumption, such as integrated optical MEMS phase shifters, tunable couplers, switches, and optomechanical resonators. In contrast to conventional SiO;-clad Si photonics, photonic MEMS and optomechanics have suspended and movable parts that need to be protected from environmental influence and contamination during operation. Wafer-level hermetic sealing can be a cost-efficient solution, but Si photonic MEMS that are hermetically sealed inside cavities with optical and electrical feedthroughs have not been demonstrated to date, to our knowledge. Here, we demonstrate wafer-level vacuum sealing of Si photonic MEMS inside cavities with ultra-thin caps featuring optical and electrical feedthroughs that connect the photonic MEMS on the inside to optical grating couplers and electrical bond pads on the outside. We used Si photonic MEMS devices built on foundry wafers from the iSiPP50G Si photonics platform of IMEC, Belgium. Vacuum confinement inside the sealed cavities was confirmed by an observed increase of the cutoff frequency of the electro-mechanical response of the encapsulated photonic MEMS phase shifters, due to reduction of air damping. The sealing caps are extremely thin, have a small footprint, and are compatible with subsequent flip-chip bonding onto interposers or printed circuit boards. Thus, our approach for sealing of integrated Si photonic MEMS clears a significant hurdle for their application in high-performance Si photonic circuits. 展开更多
关键词 sealed SEALING BONDING
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部