Serrated flow has been primarily studied at the macron scale,yet the length and times scales at which the solute-meditated dislocation pinning and de-pinning processes that underlie the phenomenon occur are largely in...Serrated flow has been primarily studied at the macron scale,yet the length and times scales at which the solute-meditated dislocation pinning and de-pinning processes that underlie the phenomenon occur are largely inaccessible by macroscopic tests.Moreover,direct insights into the dominant slip systems in the serrated flow regime,which is particularly critical in Mg alloys given their high plastic anisotropy,requires the use of small-scale testing methods such as microcompression.Thus,in this work,a combination of microcompression and TEM based EDS/STEM measurements have used to critically study the temperature and strain rate dependences in single crystals of pure Mg and a Mg-Gd alloy oriented for twinning,basal-,prismatic-,and pyramidal-slip.The results provide compelling evidence that the solute drag mechanism underlie serrated flow in the alloy;they also show that serrated flow in Mg alloys is markedly anisotropic.This anisotropy is caused by differences between the Burgers vector for slip/twinning,and between the impurity diffusivity along/perpendicular to the basal plane.展开更多
In the production of compression springs,high forming velocities and grades of deformation during winding and setting may induce cracks that can lead to failure causing risks of an accident and damage.The AE(acoustic ...In the production of compression springs,high forming velocities and grades of deformation during winding and setting may induce cracks that can lead to failure causing risks of an accident and damage.The AE(acoustic emission)technology,a non-destructive monitoring method,can detect acoustic signals reflected from cracks.To establish this method in the production of technical springs,it was necessary,to find out whether the AE signal is influenced by material properties,phase fractions distribution from tempered martensite,retained austenite,and microstructure including crystallographic texture.In addition,it was investigated to what extent the detected AE signal can be useful to separate between an actual crack and other material responses.Within an in-situ three-point bending test with the AE technology,macro-and micro-crack-typical AE signals were detected for five different spring steel wires(SH,VDSiCr,and FDSiCr according to EN-10270-1 and EN-10270-2).The relative energy related to the initiation,propagation,and growth of cracks caused by mechanical stress was measured using a piezoelectric sensor.If a crack AE signal appeared for the first time,the bending tests were stopped immediately.The results show that the frequency spectrum combined with the intensity of the acoustic signals generated during crack growth depends on the material properties and the crystallographic texture.Furthermore,it could be shown that it is possible to differentiate between micro-crack-typical AE signals and other signals that result from different material responses.展开更多
Bulk nanoporous platinum(np-Pt)samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol...Bulk nanoporous platinum(np-Pt)samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol L−1 H_(2)SO_(4)at 60℃.The as-prepared np-Pt shows an electrochemically active specific surface area as high as 25 m^(2)/g due to the ultrafine nanostructure.The active surface area remains almost invariable even after 15%macroscopic compressive strain.Furthermore,np-Pt shows considerably high thermal stability due to the low surface diffusivity of Pt.Np-Pt is a promising surface-or interface-controlled functional material,particularly when excellent electrochemical and mechanical performance are necessary due to its high surface-to-volume ratio and mechanical robustness.This work demonstrated the potential application of np-Pt as an electrochemical actuation material.In-situ dilatometry experiments revealed that the surface adsorp-tion-desorption of OH species on np-Pt causes significant strain variations.The proposed np-Pt electrochem-ical actuator shows an operating voltage down to 1.0 V,a large reversible strain amplitude of 0.37%,and a strain energy density of 1.64 MJ/m^(3).展开更多
FIB-SEM tomography is a powerful technique that integrates a focused ion beam(FIB)and a scanning electron microscope(SEM)to capture high-resolution imaging data of nanostructures.This approach involves collecting in-p...FIB-SEM tomography is a powerful technique that integrates a focused ion beam(FIB)and a scanning electron microscope(SEM)to capture high-resolution imaging data of nanostructures.This approach involves collecting in-plane SEM imagesand using FIB to remove material layers for imaging subsequent planes,thereby producing image stacks.However,theseimage stacks in FIB-SEM tomography are subject to the shine-through effect,which makes structures visible from theposterior regions of the current plane.This artifact introduces an ambiguity between image intensity and structures in thecurrent plane,making conventional segmentation methods such as thresholding or the k-means algorithm insufficient.Inthis study,we propose a multimodal machine learning approach that combines intensity information obtained at differentelectron beam accelerating voltages to improve the three-dimensional(3D)reconstruction of nanostructures.By treatingthe increased shine-through effect at higher accelerating voltages as a form of additional information,the proposed methodsignificantly improves segmentation accuracy and leads to more precise 3D reconstructions for real FIB tomography data.展开更多
Magnesium(Mg)–based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing,e.g.as a suture anchor.Due to their mechanical properties and biocompat...Magnesium(Mg)–based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing,e.g.as a suture anchor.Due to their mechanical properties and biocompatibility,they may replace titanium or stainless-steel implants,commonly used in orthopedic field.Nevertheless,patient safety has to be assured by finding a long-term balance between metal degradation,osseointegration,bone ultrastructure adaptation and element distribution in organs.In order to determine the implant behavior and its influence on bone and tissues,we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone.The implants were present in rat tibia for 10,20 and 32 weeks before sacrifice of the animal.Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal,degradation layer and bone structure.Additionally,X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface.Finally,with element specific mass spectrometry,the elements and their accumulation in the main organs and tissues are traced.The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks.No accumulation of Mg and Gd was observed in selected organs,except for the interfacial bone after 8 months of healing.Thus,we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.展开更多
文摘Serrated flow has been primarily studied at the macron scale,yet the length and times scales at which the solute-meditated dislocation pinning and de-pinning processes that underlie the phenomenon occur are largely inaccessible by macroscopic tests.Moreover,direct insights into the dominant slip systems in the serrated flow regime,which is particularly critical in Mg alloys given their high plastic anisotropy,requires the use of small-scale testing methods such as microcompression.Thus,in this work,a combination of microcompression and TEM based EDS/STEM measurements have used to critically study the temperature and strain rate dependences in single crystals of pure Mg and a Mg-Gd alloy oriented for twinning,basal-,prismatic-,and pyramidal-slip.The results provide compelling evidence that the solute drag mechanism underlie serrated flow in the alloy;they also show that serrated flow in Mg alloys is markedly anisotropic.This anisotropy is caused by differences between the Burgers vector for slip/twinning,and between the impurity diffusivity along/perpendicular to the basal plane.
文摘In the production of compression springs,high forming velocities and grades of deformation during winding and setting may induce cracks that can lead to failure causing risks of an accident and damage.The AE(acoustic emission)technology,a non-destructive monitoring method,can detect acoustic signals reflected from cracks.To establish this method in the production of technical springs,it was necessary,to find out whether the AE signal is influenced by material properties,phase fractions distribution from tempered martensite,retained austenite,and microstructure including crystallographic texture.In addition,it was investigated to what extent the detected AE signal can be useful to separate between an actual crack and other material responses.Within an in-situ three-point bending test with the AE technology,macro-and micro-crack-typical AE signals were detected for five different spring steel wires(SH,VDSiCr,and FDSiCr according to EN-10270-1 and EN-10270-2).The relative energy related to the initiation,propagation,and growth of cracks caused by mechanical stress was measured using a piezoelectric sensor.If a crack AE signal appeared for the first time,the bending tests were stopped immediately.The results show that the frequency spectrum combined with the intensity of the acoustic signals generated during crack growth depends on the material properties and the crystallographic texture.Furthermore,it could be shown that it is possible to differentiate between micro-crack-typical AE signals and other signals that result from different material responses.
文摘Bulk nanoporous platinum(np-Pt)samples with a remarkably fine ligament size down to 2 nm and good mechanical robustness were fabricated for the first time by electrochemically dealloying Pt15Cu85 master alloy in 1 mol L−1 H_(2)SO_(4)at 60℃.The as-prepared np-Pt shows an electrochemically active specific surface area as high as 25 m^(2)/g due to the ultrafine nanostructure.The active surface area remains almost invariable even after 15%macroscopic compressive strain.Furthermore,np-Pt shows considerably high thermal stability due to the low surface diffusivity of Pt.Np-Pt is a promising surface-or interface-controlled functional material,particularly when excellent electrochemical and mechanical performance are necessary due to its high surface-to-volume ratio and mechanical robustness.This work demonstrated the potential application of np-Pt as an electrochemical actuation material.In-situ dilatometry experiments revealed that the surface adsorp-tion-desorption of OH species on np-Pt causes significant strain variations.The proposed np-Pt electrochem-ical actuator shows an operating voltage down to 1.0 V,a large reversible strain amplitude of 0.37%,and a strain energy density of 1.64 MJ/m^(3).
基金funded by the Deutsche Forschungsgemein-schaft(DFG,German Research Foundation)-SFB 986-Project number 192346071.
文摘FIB-SEM tomography is a powerful technique that integrates a focused ion beam(FIB)and a scanning electron microscope(SEM)to capture high-resolution imaging data of nanostructures.This approach involves collecting in-plane SEM imagesand using FIB to remove material layers for imaging subsequent planes,thereby producing image stacks.However,theseimage stacks in FIB-SEM tomography are subject to the shine-through effect,which makes structures visible from theposterior regions of the current plane.This artifact introduces an ambiguity between image intensity and structures in thecurrent plane,making conventional segmentation methods such as thresholding or the k-means algorithm insufficient.Inthis study,we propose a multimodal machine learning approach that combines intensity information obtained at differentelectron beam accelerating voltages to improve the three-dimensional(3D)reconstruction of nanostructures.By treatingthe increased shine-through effect at higher accelerating voltages as a form of additional information,the proposed methodsignificantly improves segmentation accuracy and leads to more precise 3D reconstructions for real FIB tomography data.
基金This publication is part of a project that has received funding from the European Union’s Horizon 2020 research and innovation program under the Marie Sk lodowska-Curie grant,agreement No 811226Röntgen-Angström Cluster in project SynchroLoad(05K16CGA)+5 种基金Swedish Research Council 2015-06109German Bundesministerium für Bildung und Forschung in project MgBone(05K16CGB)We acknowledge DESY(Hamburg,Germany),a member of the Helmholtz Association HGF,for the provision of experimental facilities.Parts of this research were carried out at PETRA IIIThe authors would like to thank Diamond Light Source for beamtime(proposal MG25078)Miguel Gomez Gonzalez and Julia Parker for assistance during the experiment at the I14 beamline and during the data analysisThis research was carried out in collaboration with the Quantitative Bio Element Analysis and Mapping(QBEAM)Center at Michigan State University and The National Research Resource for Quantitative Elemental Mapping for the Life Sciences(QE-Map)under Grant P41 GM135018(as well as Grant S10OD026786)from the National Institute of General Medical Sciences of the National Institutes of Health.
文摘Magnesium(Mg)–based alloys are becoming attractive materials for medical applications as temporary bone implants for support of fracture healing,e.g.as a suture anchor.Due to their mechanical properties and biocompatibility,they may replace titanium or stainless-steel implants,commonly used in orthopedic field.Nevertheless,patient safety has to be assured by finding a long-term balance between metal degradation,osseointegration,bone ultrastructure adaptation and element distribution in organs.In order to determine the implant behavior and its influence on bone and tissues,we investigated two Mg alloys with gadolinium contents of 5 and 10 wt percent in comparison to permanent materials titanium and polyether ether ketone.The implants were present in rat tibia for 10,20 and 32 weeks before sacrifice of the animal.Synchrotron radiation-based micro computed tomography enables the distinction of features like residual metal,degradation layer and bone structure.Additionally,X-ray diffraction and X-ray fluorescence yield information on parameters describing the bone ultrastructure and elemental composition at the bone-to-implant interface.Finally,with element specific mass spectrometry,the elements and their accumulation in the main organs and tissues are traced.The results show that Mg-xGd implants degrade in vivo under the formation of a stable degradation layer with bone remodeling similar to that of Ti after 10 weeks.No accumulation of Mg and Gd was observed in selected organs,except for the interfacial bone after 8 months of healing.Thus,we confirm that Mg-5Gd and Mg-10Gd are suitable material choices for bone implants.