Extreme environments, primeval forest, sea sediments and plants in China yielded members of a new suborder, Jiangellineae, a new family Sinobacteraceae, and 23 new genera of actinomycetes and other bacteria. Three sug...Extreme environments, primeval forest, sea sediments and plants in China yielded members of a new suborder, Jiangellineae, a new family Sinobacteraceae, and 23 new genera of actinomycetes and other bacteria. Three suggestions were made for further discoveries of new actinomycetes. First, natural habitats such as old growth forests, and extreme environments, should be given sampling priority; second, culturing procedures need to be constantly improved to mimic natural habitats; third, less than 98.5% similarity of 16S rRNA sequence to that of a known species could be used as an indicator of a new species.展开更多
Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton vari...Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.展开更多
Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic di...Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic disease effects of SLP and the underlying mechanisms in mice.In the current study,we prepared the SLP mainly consisting of three flavonoid glycosides,three phenol derivatives,and two lignans including one new compound,and further demonstrated that SLP reduced body weight gain and fat accumulation,improved glucose and lipid metabolism disorders,ameliorated hepatic steatosis,and regulated short-chain fatty acids(SCFAs)production and secondary bile acids metabolism in ob/ob mice.Notably,SLP largely altered the gut microbiota composition,especially enriching the commensal bacteria Akkermansia muciniphila and Bacteroides acidifaciens.Oral gavage with the above two strains ameliorated metabolic syndrome(MetS),regulated secondary bile acid metabolism,and increased the production of SCFAs in high-fat diet(HFD)-induced obese mice.These results demonstrated that SLP could be used as a prebiotic to attenuate MetS via regulating gut microbiota composition and further activating the secondary bile acids-mediated gut-adipose axis.展开更多
Citrus is the typical mycorrhizal fruit tree species establishing symbiosis with arbuscular mycorrhizal (AM) fungi. However, arbuscule development and senescence in colonized citrus roots, especially in response to dr...Citrus is the typical mycorrhizal fruit tree species establishing symbiosis with arbuscular mycorrhizal (AM) fungi. However, arbuscule development and senescence in colonized citrus roots, especially in response to drought stress, remain unclear, which is mainly due to the difficulty in clearing and staining lignified roots with the conventional method. Here, we improved the observation of colonized roots of citrus plants with the sectioning method, which enabled the clear observation of AM fungal structures. Furthermore, we investigated the effects of one week of drought stress on arbuscule development and senescence with the sectioning method. Microscopy observations indicated that drought stress significantly decreased mycorrhizal colonization (F%and M%) although it did not affect plant growth performance. Fluorescence probes (WGA 488 and/or Nile red) revealed that drought stress inhibited arbuscule development by increasing the percentage of arbuscules at the early stage and decreasing the percentages of arbuscules at the midterm and mature stages. Meanwhile, drought stress accelerated arbuscule senescence, which was characterized by the increased accumulation of neutral lipids. Overall, the sectioning method developed in this study enables the in-depth investigation of arbuscule status, and drought stress can inhibit arbuscule development but accelerate arbuscule senescence in the colonized roots of citrus plants. This study paves the way to elaborately dissecting the arbuscule dynamics in the roots of fruit tree species in response to diverse abiotic stresses.展开更多
Objective:To explore the correlation between genotypes of Orientia(O.)tsutsugamushi and clinical characteristics of scrub typhus patients.Methods:Clinical data of patients with scrub typhus admitted to different types...Objective:To explore the correlation between genotypes of Orientia(O.)tsutsugamushi and clinical characteristics of scrub typhus patients.Methods:Clinical data of patients with scrub typhus admitted to different types of medical institutions in Guangzhou from September 2012 to December 2016 were collected using medical records.Demographic data,clinical manifestations,as well as hematological and biochemical indicators of patients infected with different genotypes were analyzed and compared.Results:A total of 192 patients were included in this study,including 121 patients with Karp genotype of O.tsutsugamushi infection(63.0%),36 patients with Gilliam genotype(19.0%),23 patients with Kato genotype(12.0%),and 12 patients with TA763 genotype(6.0%)infection.The median value of albumin in patients with Karp genotype infection was significantly lower than that of Gilliam-infected patients(P=0.032).Patients with Karp genotype infection had a significantly longer hospital stay(9 days)than those with Gilliam genotype(7 days)(P=0.009)and Kato genotype infection(6 days)(P=0.005).Karp-infected patients also represented for the largest number of patients with complicated organ involvement(88/133,66.2%).Furthermore,Karp-infected patients had higher risk of developing multiple organ dysfunction syndrome(18.2%)and requiring intensive care unit treatment(15.9%).Besides,patients with Gilliam genotype(8 days)and TA763 genotype infection(7.5 days)had shorter fever duration than those with Karp genotype(9 days)and Kato genotype(9 days)infection,respectively.Conclusions:Genotypes of Orientia tsutsugamushi were associated with varying clinical manifestations,organ involvement,and treatment outcomes,suggesting that genotypes ranged in virulence.展开更多
Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS ...Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin(CDDP),a widely used anticancer agent.Unfortunately,few suitable natural TLS inhibitors have been reported.Here,we found that a triterpenoid compound Ganoboninketal C(26-3)from Ganoderma boninense,a traditional Chinese medicine,can impair CDDP-induced TLS polymerase eta(Polη)focus formation,PCNA monoubiquitination as well as mutagenesis.Moreover,26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure.Interestingly,26-3 can also sensitize tumor cells to Gefitinib therapy.Mechanistically,through RNA-seq analysis,we found that 26-3 could abrogate the CDDP-induced upregulation of Polηand PIDD(p53-induced protein with a death domain),2 known factors promoting TLS pathway.Furthermore,we found that activating transcription factor 3 is a potential novel TLS modulator.Taken together,we have identified a natural TLS inhibitor 26-3,which can be potentially used as an adjuvant to improve clinical efficacy.展开更多
According to international standard plant quarantine measures and principle risk analysis(ISPM No.11),a risk assessment was carried out for Passalora sequoiae through geographical distribution,possibility of colonizat...According to international standard plant quarantine measures and principle risk analysis(ISPM No.11),a risk assessment was carried out for Passalora sequoiae through geographical distribution,possibility of colonization,probability of diffusion,economic importance and difficulty in risk management.Results show that P.sequoiae has a greater risk of introduction and diffusion,and it has distributed in parts of China.It is suggested that P.sequoiae should be added to the list of forest dangerous pests in China.Besides,porting departments should focus on the pathogen on imported host seedlings like Cryptomeria.展开更多
Jasmine essential oil and lemon essential oil were selected for deodorizing ingredient.Lysine and silver ions were selected as auxiliary raw material.The product was prepared by emulsion dissolution technology.The min...Jasmine essential oil and lemon essential oil were selected for deodorizing ingredient.Lysine and silver ions were selected as auxiliary raw material.The product was prepared by emulsion dissolution technology.The minimum inhibitory concentration of various bacteria were during 100~2,000 mg/L.In the test,the germicidal efficiency of 2.0%(w/w)deodorant was 99%.The removal efficiency of trimethylamine and methanthiol were more than 95%by 3.0%(w/w).deodorant.The removal efficiency of ammonia and methanthiol were more than 92%by 3.0%(w/w)deodorant.In addition,The removal efficiency of isovaleric acid was 98%by 2.0%(w/w)deodorant.In analysis result,common pathogenic bacteria were effectively suppressed,kitchen and toilet odors were efficiently removed by natural plant deodorant.展开更多
The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alph...The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alpha-titanium phosphate (α-TiP) nanoparticles were synthesized and treated with silver salt to enhance their antimicrobial properties. The physicochemical characteristics and antimicrobial activity were evaluated. It was revealed by X-ray diffraction analysis that the structural integrity of α-TiP was influenced by ethylenediamine and silver ions. Distinct degradation profiles for each chemical modification were shown by thermogravimetric analysis. Infrared spectroscopy detected shifts and new absorption peaks in the spectra depending on the type of modification. Energy dispersive spectroscopy confirmed the disaggregation of α-TiP galleries following the addition of silver salt, which increased their effectiveness against microorganisms. Notably, only the sample treated with silver ions exhibited antimicrobial action. Antimicrobial activity was tested against the bacteria of medical importance Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria momocytogenes and the yeast Candida albicans. All microorganisms were inhibited by sample containing silver. Minor inhibition was observed against the Gram-positive bacteria L. monocytogenes and Bacillus cereus, while the greatest inhibition occurred against the fungus (yeast) C. albicans. The results revealed a potential application of the nanoparticles for control of microorganisms in public health.展开更多
The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Prov- ince, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambie...The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Prov- ince, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambient to -97 ℃; pH from 〈1.8 to≥9.3) provides a multitude of niches for extremophilic microorganisms. A variety of studies have focused on the cultivation, identification, basic physiology, taxonomy, and biotechnological potential of thermophilic microorganisms from Rehai. Ther- mophilic bacteria isolated from Rehai belong to the phyla Firmicutes and Deinococcus-Thermus. Firmicutes include neutrophilic or alkaliphilic Anoxybacillus, Bacillus, Caldalkalibacillus, Caldanaerobacter, Laceyella, and Geobacillus, as well as thermoacidophilic Alicyclobacillus and Sulfobacillus. Isolates from the Deinococcus-Thermus phylum include several Meiothermus and Thermus species. Many of these bacteria synthesize thermostable polymer-degrading enzymes that may be useful for biotech- nology. The thermoacidophilic archaea Acidianus, Metallosphaera, and Sulfolobus have also been isolated and studied. A few studies have reported the isolation of thermophilic viruses belonging to Siphoviridae (TTSP4 and TTSP10) and Fuselloviridae (STSV1) infecting Thermus spp. and Sulfolobus spp., respectively. More recently, cultivation-independent studies using 16S rRNA gene sequences, shotgun metagenomics, or "'functional gene" sequences have revealed a mtlch broader diversity of micro- organisms than represented in culture. Studies of the gene and mRNA encoding 113e large subunit of the ammonia monooxygenase (amoA) of ammonia-oxidizing Archaea (AOA) and the tetraether lipid cre- narchaeol, a potential hiomarker for AOA, suggest a wide diversity, but possibly low abundance, of ther- mophilic AOA in Rehai. Finally, we introduce the Tengchong Partnerships in International Research and Education (P1RE) project, an international collaboration between Chinese and U.S. scientists with the goal of promoting international and interdisciplinary cooperation to gain a more holistic and gh〉bal view of life in te^estrial geothermal springs.展开更多
Objective:To synthesize zinc oxide nanoparticles(ZnONPs)and evaluate their antibacterial and wound healing effects against wounds infected with methicillin-resistant Staphylococcus aureus(MRSA).Methods:ZnONPs were pre...Objective:To synthesize zinc oxide nanoparticles(ZnONPs)and evaluate their antibacterial and wound healing effects against wounds infected with methicillin-resistant Staphylococcus aureus(MRSA).Methods:ZnONPs were prepared by sol-gel method and characterized by X-ray diffraction(XRD)analysis and scanning electron microscopy(SEM).A total of 18 rabbits were divided into three groups:the ZnONPs group,the gentamicin group and the control group.A wound of 3 cm^(2) was inflicted on each rabbit and contaminated with MRSA inoculum.Treatment was started from the fourth day post-surgery.Wound healing,microbiological analysis,and histopathological analysis were performed to assess the efficacy of ZnONPs ointment.Results:XRD analysis confirmed the hexagonal wurtzite structure of the ZnONPs with an average crystallite size of 29.23 nm.SEM revealed discoid-shaped ZnONPs with a rough surface and an average size of 48.36 nm.Energy-dispersive X-ray analysis confirmed the purity of ZnONPs.Moreover,the particle size ranged from 100-700 nm with a high agglomeration trend.Treatment with ZnONPs promoted MRSA-infected wound healing.In addition,ZnONPs showed a good antibacterial effect as evidenced by a dose-dependent increase in the zone of inhibition.Conclusions:ZnONPs accelerate the healing of MRSA-infected wounds.Therefore,it can be explored for the treatment of MRSA infection.展开更多
Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not idea...Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not ideal.In this study,we developed a dual-antigen nanoconjugate vaccine containing both polysaccharide and protein antigens against Brucella.First,the antigenic polysaccharide was covalently coupled to the outer membrane protein Omp19 using protein glycan coupling technology,and then it was successfully loaded on a nano-carrier through the SpyTag/SpyCatcher system.After confirming the efficient immune activation and safety performance of the dual-antigen nanoconjugate vaccine,the potent serum antibody response against the two antigens and remarkable protective effect in non-lethal and lethal Brucella infection models were further demonstrated through different routes of administration.These results indicated that the dual-antigen nanoconjugate vaccine enhanced both T helper 1 cell(Th1)and Th2 immune responses and protected mice from Brucella infection.Furthermore,we found that this protective effect was maintained for at least 18 weeks.To our knowledge,this is the first Brucella vaccine bearing diverse antigens,including a protein and polysaccharide,on a single nanoparticle.Thus,we also present an attractive technology for co-delivery of different types of antigens using a strategy applicable to other vaccines against infectious diseases.展开更多
Rose(Rosa chinensis),which is an economically valuable floral species worldwide,has three types,namely once-flowering(OF),occasional or re-blooming(OR),and recurrent or continuous flowering(CF).However,the mechanism u...Rose(Rosa chinensis),which is an economically valuable floral species worldwide,has three types,namely once-flowering(OF),occasional or re-blooming(OR),and recurrent or continuous flowering(CF).However,the mechanism underlying the effect of the age pathway on the duration of the CF or OF juvenile phase is largely unknown.In this study,we observed that the RcSPL1 transcript levels were substantially upregulated during the floral development period in CF and OF plants.Additionally,accumulation of RcSPL1 protein was controlled by rch-miR156.The ectopic expression of RcSPL1 in Arabidopsis thaliana accelerated the vegetative phase transition and flowering.Furthermore,the transient overexpression of RcSPL1 in rose plants accelerated flowering,whereas silencing of RcSPL1 had the opposite phenotype.Accordingly,the transcription levels of floral meristem identity genes(APETALA1,FRUITFULL,and LEAFY)were significantly affected by the changes in RcSPL1 expression.RcTAF15b protein,which is an autonomous pathway protein,was revealed to interact with RcSPL1.The silencing and overexpression of RcTAF15b in rose plants led to delayed and accelerated flowering,respectively.Collectively,the study findings imply that RcSPL1–RcTAF15b modulates the flowering time of rose plants.展开更多
Pea(Pisum sativum L.)is an annual cool-season legume crop.Owing to its role in sustainable agriculture as both a rotation and a cash crop,its global market is expanding and increased production is urgently needed.For ...Pea(Pisum sativum L.)is an annual cool-season legume crop.Owing to its role in sustainable agriculture as both a rotation and a cash crop,its global market is expanding and increased production is urgently needed.For both technical and regulatory reasons,neither conventional nor transgenic breeding techniques can keep pace with the demand for increased production.In answer to this challenge,CRISPR/Cas9 genome editing technology has been gaining traction in plant biology and crop breeding in recent years.However,there are currently no reports of the successful application of the CRISPR/Cas9 genome editing technology in pea.We developed a transient transformation system of hairy roots,mediated by Agrobacterium rhizogenes strain K599,to validate the efficiency of a CRISPR/Cas9 system.Further optimization resulted in an efficient vector,PsU6.3-tRNA-PsPDS3-en35S-PsCas9.We used this optimized CRISPR/Cas9 system to edit the pea phytoene desaturase(PsPDS)gene,causing albinism,by Agrobacterium-mediated genetic transformation.This is the first report of successful generation of gene-edited pea plants by this route.展开更多
Plastic film mulch in agricultural production becomes essential to maintaining crop yields in arid and semiarid areas.However,the presence of residual film in farmland soil has also drawn much attention.In this study,...Plastic film mulch in agricultural production becomes essential to maintaining crop yields in arid and semiarid areas.However,the presence of residual film in farmland soil has also drawn much attention.In this study,three experiments were conducted.The first two experimental designs included 0,450,1350,and 2700 kg ha^(-1) of residual film pieces of approximately 5 cm side length added to field soil(0-20 cm soil depth)for seven years and added to pots for four years.In the third experiment,1350 kg ha^(-1)of the residual film with different side lengths(2-5,5-10,10-15,and 15-20 cm)was added to field soil for six years to explore the effect of residual film fragment size on soil nutrients,soil microorganisms,crop growth and yields.The residual film had little effect on the soil moisture at a field depth of 0-2(or 0-1.8)m.There were no significant effects on organic carbon,total nitrogen,inorganic nitrogen,total phosphorus or available phosphorus in the 0-20 cm soil layer.The presence of residual film decreased the richness and diversity of the bacterial community of the surface soil of the residual film,but it had no significant effect on the microbial community of the non-surface soil.The emergence rates of wheat and lentils occasionally decreased significantly with different amounts of residue fragments added to the field.At 450-2700 kg ha^(-1),the residual film reduced the plant height and stem diameter of maize and significantly reduced the shoot biomass of harvested maize by 11-19%.The average yields of maize and potato over the seven years decreased,but there were almost no significant statistical differences among the treatments.These results provide important data for a comprehensive scientific understanding of the effects of residual film on soil and crops in dryland farming systems.展开更多
Palmitoleic acid(POA)can be naturally found only in few oil seeds and has significant applications in pharmaceutical industry.Recently,the isolated oleaginous yeast Scheffersomyces segobiensis DSM 27193 was identified...Palmitoleic acid(POA)can be naturally found only in few oil seeds and has significant applications in pharmaceutical industry.Recently,the isolated oleaginous yeast Scheffersomyces segobiensis DSM 27193 was identified with high content of POA in its intracellular lipid(13.80%).In this study,process optimization focused on dissolved oxygen regulation to improve POA production was conducted.Dynamic agitation was found to do significant enhancement on POA-rich lipid production than aeration regulation.Under the best condition of 1000 r·min^(-1)of agitation and 1 vvm(airvolume/culture volume/min)of aeration,no ethanol was detected during the whole fermentation process,while a dry biomass concentration of 44.80 g·L^(-1)with 13.43 g·L^(-1)of lipid and 2.93 g·L^(-1)of POA was achieved.Transcription analysis revealed that the ethanol synthetic pathway was downregulated under the condition of high agitation,while the expression of the key enzymes responsible for lipid and POA accumulation were enhanced.展开更多
BACKGROUND Formyl peptide receptor 2(Fpr2)is an important receptor in host resistance to bacterial infections.In previous studies,we found that the liver of Fpr2-/-mice is the most severely damaged target organ in blo...BACKGROUND Formyl peptide receptor 2(Fpr2)is an important receptor in host resistance to bacterial infections.In previous studies,we found that the liver of Fpr2-/-mice is the most severely damaged target organ in bloodstream infections,although the reason for this is unclear.AIM To investigate the role of Fpr2 in liver homeostasis and host resistance to bacterial infections.METHODS Transcriptome sequencing was performed on the livers of Fpr2-/-and wild-type(WT)mice.Differentially expressed genes(DEGs)were identified in the Fpr2-/-and WT mice,and the biological functions of DEGs were analyzed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Quantitative real time-polymerase chain reaction(qRT-PCR)and western blot(WB)analyses were used to further validate the expression levels of differential genes.Cell counting kit-8 assay was employed to investigate cell survival.The cell cycle detection kit was used to measure the distribution of cell cycles.The Luminex assay was used to analyze cytokine levels in the liver.The serum biochemical indices and the number of neutrophils in the liver were measured,and hepatic histopathological analysis was performed.RESULTS Compared with the WT group,445 DEGs,including 325 upregulated genes and 120 downregulated genes,were identified in the liver of Fpr2-/-mice.The enrichment analysis using GO and KEGG showed that these DEGs were mainly related to cell cycle.The qRT-PCR analysis confirmed that several key genes(CycA,CycB1,Cdc20,Cdc25c,and Cdk1)involved in the cell cycle had significant changes.The WB analysis confirmed a decrease in the expression of CDK1 protein.WRW4(an antagonist of Fpr2)could inhibit the proliferation of HepG2 cells in a concentration dependent manner,with an increase in the number of cells in the G0/G1 phase,and a decrease in the number of cells in the S phase.Serum alanine aminotransferase levels increased in Fpr2-/-mice.The Luminex assay measurements showed that interleukin(IL)-10 and chemokine(C-X-C motif)ligand(CXCL)-1 levels were significantly reduced in the liver of Fpr2-/-mice.There was no difference in the number of neutrophils,serum C-reactive protein levels,and liver pathology between WT and Fpr2-/-mice.CONCLUSION Fpr2 participates in the regulation of cell cycle and cell proliferation,and affects the expression of IL-10 and CXCL-1,thus playing an important protective role in maintaining liver homeostasis.展开更多
Following the outbreak of coronavirus disease 2019(COVID-19),several severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-related coronaviruses have been discovered.Previous research has identified a novel line...Following the outbreak of coronavirus disease 2019(COVID-19),several severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-related coronaviruses have been discovered.Previous research has identified a novel lineage of SARS-CoV-2-related CoVs in bats,including RsYN04,which recognizes human angiotensin-converting enzyme 2(ACE2)and thus poses a potential threat to humans.Here,we screened the binding of the RsYN04receptor-binding domain(RBD)to ACE2 orthologs from 52animal species and found that the virus showed a narrower ACE2-binding spectrum than SARS-CoV-2.However,the presence of the T484W mutation in the RsYN04 RBD broadened its range.We also evaluated 44 SARS-CoV-2antibodies targeting seven epitope communities in the SARS-CoV-2 RBD,together with serum obtained from COVID-19 convalescents and vaccinees,to determine their cross-reaction against RsYN04.Results showed that no antibodies,except for the RBD-6 and RBD-7 classes,bound to the RsYN04 RBD,indicating substantial immune differences from SARS-CoV-2.Furthermore,the structure of the RsYN04 RBD in complex with cross-reactive antibody S43 in RBD-7 revealed a potently broad epitope for the development of therapeutics and vaccines.Our findings suggest RsYN04 and other viruses belonging to the same clade have the potential to infect several species,including humans,highlighting the necessity for viral surveillance and development of broad anticoronavirus countermeasures.展开更多
The coronavirus disease 2019(COVID-19)pandemic caused by frequently mutating severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has had a worldwide impact.However,detailed data on the potential aerosol transmi...The coronavirus disease 2019(COVID-19)pandemic caused by frequently mutating severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has had a worldwide impact.However,detailed data on the potential aerosol transmission of SARS-CoV-2 in real-world and controlled laboratory settings remain sparse.During the COVID-19 pandemic in Shanghai,China in 2022,samples were collected in a Fangcang shelter hospital,a large-scale temporary hospital rapidly built by converting the existing National Exhibition and Convention Center(Shanghai)into a health care facility.Aerosol samples at different sites and intervals around patients and in public areas,surface samples,and pharyngeal swab samples from corresponding patients were included.Samples were tested for SARS-CoV-2 using real-time quantitative polymerase chain reaction(RT-qPCR)assays,followed by sequencing if the cycle threshold(Ct)value was<30.The positivity rate for SARS-CoV-2 in aerosol samples was high in contaminated zones(37.5%,104/277),especially around the bed(41.2%,68/165)and near ventilation inlets(45.2%,14/31).The prevalence of SARS-CoV-2 around the bed,public areas,and air inlets of exhaust vents fluctuated and was closely related to the positivity rate among patients at corresponding sampling sites.Some surface samples of different personal protective equipment from medical staff had high positivity rates.Sixty sequences of joined ORF1ab and spike genes obtained from sixty samples represented two main clusters of Omicron SARS-CoV-2.There was consistency in virus sequences from the same patient and their environment,and the detected virus sequences matched those of virus strains in circulation during the collection periods,which indicated a high likelihood of cross-contamination in the Fangcang shelter hospital.In summary,the results provide a quantitative and real landscape of the aerosol transmission of SARS-CoV-2 and a patient-centered view of contamination in large and enclosed spaces and offer a useful guide for taking targeted measures to avoid nosocomial infections during the management of SARS-CoV-2 or other respiratory virus diseases in a Fangcang shelter hospital.展开更多
In the Republic of Moldova, the viticulture industry is a sector with a high economic impact, and the utilization of secondary products from winemaking represents a growing concern regarding environmental sustainabili...In the Republic of Moldova, the viticulture industry is a sector with a high economic impact, and the utilization of secondary products from winemaking represents a growing concern regarding environmental sustainability. Wine lees, one of the types of wine waste, is less studied in order to valorize it. Currently it is used in the production of ethyl alcohol, as aggregates in the soil and others. The aim of this study was to characterize from a physico-chemical and microbiological point of view the lees sediments obtained after the primary fermentation of three types of individualized red wines made from autochthonous grapes varieties. It was found that residual yeasts represent a valuable raw material containing carbohydrates (from 14.35% ± 0.19% to 25.11% ± 1.51% SU), lipids (from 4.61% ± 0.21% to 9.41% ± 2.04% SU), proteins (from 42.62% ± 1.57% to 77.62% ± 9.14% SU), anthocyanins (from 9.18 ± 0.15 to 22.78 ± 1.60 mg cianid) and beta-glucans (from 12.84% ± 0.01% to 17.42% ± 0.02%). The pH value of wine lees ranges from 3.49 ± 0.0 to 3.083 ± 0.01, the dry matter from 9.62% ± 0.22% to 25.06% ± 0.42% and the ash from 0.03% ± 0.42% to 0.035% ± 0.21%. The microbiological study confirmed the presence of live yeasts of the genus Saccharomyces cerevisiae, which remain active due to the presence of residual sugars and oxygen. The results of the research are promising and encourage the obtaining of new products with special purpose and added value.展开更多
基金supported by the National Natural Science Foundation of China (30900002,30600001 and U0932601)the International Cooperative Program of the Ministry of Science of Technology (2006DF-A33550)
文摘Extreme environments, primeval forest, sea sediments and plants in China yielded members of a new suborder, Jiangellineae, a new family Sinobacteraceae, and 23 new genera of actinomycetes and other bacteria. Three suggestions were made for further discoveries of new actinomycetes. First, natural habitats such as old growth forests, and extreme environments, should be given sampling priority; second, culturing procedures need to be constantly improved to mimic natural habitats; third, less than 98.5% similarity of 16S rRNA sequence to that of a known species could be used as an indicator of a new species.
基金supported by the National Key Research and Development Program of China(2022YFD1200300)the National Natural Science Foundation of China(32072376 and 32372515)+3 种基金Winall Hi-tech Seed Co.,Ltd.,China(GMLM2023)the Nanfan Special Project of Chinese Academy of Agricultural Sciences(CAAS)(ZDXM2303 and YBXM2415)the Natural Science Foundation of Hebei Province,China(C2022204205)the Agricultural Science and Technology Innovation Program of CAAS。
文摘Verticillium wilt(VW),induced by the soil-borne fungus Verticillium dahliae(Vd),poses a substantial threat to a diverse array of plant species.Employing molecular breeding technology for the development of cotton varieties with heightened resistance to VW stands out as one of the most efficacious protective measures.In this study,we successfully generated two stable transgenic lines of cotton(Gossypium hirsutum L.),VdThitRNAi-1 and VdThit-RNAi-2,using host-induced gene silencing(HIGS)technology to introduce double-stranded RNA(dsRNA)targeting the thiamine transporter protein gene(VdThit).Southern blot analysis confirmed the presence of a single-copy insertion in each line.Microscopic examination showed marked reductions in the colonization and spread of Vd-mCherry in the roots of VdThit-RNAi cotton compared to wild type(WT).The corresponding disease index and fungal biomass of VdThit-RNAi-1/2 also exhibited significant reductions.Real-time quantitative PCR(qRT-PCR)analysis demonstrated a substantial inhibition of VdThit expression following prolonged inoculation of VdThit-RNAi cotton.Small RNA sequencing(sRNA-Seq)analysis revealed the generation of a substantial number of VdThit-specific siRNAs in the VdThit-RNAi transgenic lines.Additionally,the silencing of VdThit by the siVdThit produced by VdThit-RNAi-1/2 resulted in the elevated expression of multiple genes involved in the thiamine biosynthesis pathway in Vd.Under field conditions,VdThit-RNAi transgenic cotton exhibited significantly enhanced disease resistance and yield compared with WT.In summary,our findings underscore the efficacy of HIGS targeting VdThit in restraining the infection and spread of Vd in cotton,thereby potentially enabling the development of cotton breeding as a promising strategy for managing VW.
基金supported by the National key research and development program of China(2019YFA0905600)the Science and Technology Service Network Program of the Chinese Academy of Sciences(KFJ-STS-QYZD-201-5-3)the Strategic Priority Research Program(Class B)of Chinese Academy of Sciences(XDB 38020300)。
文摘Sugarcane leaves-derived polyphenols(SLP)have been demonstrated to have diverse health-promoting benefits,but the mechanism of action has not been fully elucidated.This study aimed to investigate the anti-metabolic disease effects of SLP and the underlying mechanisms in mice.In the current study,we prepared the SLP mainly consisting of three flavonoid glycosides,three phenol derivatives,and two lignans including one new compound,and further demonstrated that SLP reduced body weight gain and fat accumulation,improved glucose and lipid metabolism disorders,ameliorated hepatic steatosis,and regulated short-chain fatty acids(SCFAs)production and secondary bile acids metabolism in ob/ob mice.Notably,SLP largely altered the gut microbiota composition,especially enriching the commensal bacteria Akkermansia muciniphila and Bacteroides acidifaciens.Oral gavage with the above two strains ameliorated metabolic syndrome(MetS),regulated secondary bile acid metabolism,and increased the production of SCFAs in high-fat diet(HFD)-induced obese mice.These results demonstrated that SLP could be used as a prebiotic to attenuate MetS via regulating gut microbiota composition and further activating the secondary bile acids-mediated gut-adipose axis.
基金supported by grants from the Natural Science Foundation of China (Grant No.42077040)the open competition program of top ten critical priorities of Agricultural Science and Technology Innovation for the 14th Five-Year Plan of Guangdong Province (Grant Nos.2022SDZG09,2023SDZG09)+1 种基金the Natural Science Foundation of Guangdong (Grant No.2021B1515010868)the GDAS Project of Science and Technology Development(2021GDASYL-20210103023)。
文摘Citrus is the typical mycorrhizal fruit tree species establishing symbiosis with arbuscular mycorrhizal (AM) fungi. However, arbuscule development and senescence in colonized citrus roots, especially in response to drought stress, remain unclear, which is mainly due to the difficulty in clearing and staining lignified roots with the conventional method. Here, we improved the observation of colonized roots of citrus plants with the sectioning method, which enabled the clear observation of AM fungal structures. Furthermore, we investigated the effects of one week of drought stress on arbuscule development and senescence with the sectioning method. Microscopy observations indicated that drought stress significantly decreased mycorrhizal colonization (F%and M%) although it did not affect plant growth performance. Fluorescence probes (WGA 488 and/or Nile red) revealed that drought stress inhibited arbuscule development by increasing the percentage of arbuscules at the early stage and decreasing the percentages of arbuscules at the midterm and mature stages. Meanwhile, drought stress accelerated arbuscule senescence, which was characterized by the increased accumulation of neutral lipids. Overall, the sectioning method developed in this study enables the in-depth investigation of arbuscule status, and drought stress can inhibit arbuscule development but accelerate arbuscule senescence in the colonized roots of citrus plants. This study paves the way to elaborately dissecting the arbuscule dynamics in the roots of fruit tree species in response to diverse abiotic stresses.
基金supported by the Science and Technology Plan Grant of Guangzhou(grant number 202102080035)the Guangzhou Health and Family Planning Science and Technology Project Western Medicine-general Guidance Project(20221A011067)+2 种基金the Basic Research Project of Key Laboratory of Guangzhou(grant number 202102100001)the Key Project of Medicine Discipline of Guangzhou(grant number 2021-2023-12)the Guangzhou Health Science and Technology Project(grant number 20221A011066).
文摘Objective:To explore the correlation between genotypes of Orientia(O.)tsutsugamushi and clinical characteristics of scrub typhus patients.Methods:Clinical data of patients with scrub typhus admitted to different types of medical institutions in Guangzhou from September 2012 to December 2016 were collected using medical records.Demographic data,clinical manifestations,as well as hematological and biochemical indicators of patients infected with different genotypes were analyzed and compared.Results:A total of 192 patients were included in this study,including 121 patients with Karp genotype of O.tsutsugamushi infection(63.0%),36 patients with Gilliam genotype(19.0%),23 patients with Kato genotype(12.0%),and 12 patients with TA763 genotype(6.0%)infection.The median value of albumin in patients with Karp genotype infection was significantly lower than that of Gilliam-infected patients(P=0.032).Patients with Karp genotype infection had a significantly longer hospital stay(9 days)than those with Gilliam genotype(7 days)(P=0.009)and Kato genotype infection(6 days)(P=0.005).Karp-infected patients also represented for the largest number of patients with complicated organ involvement(88/133,66.2%).Furthermore,Karp-infected patients had higher risk of developing multiple organ dysfunction syndrome(18.2%)and requiring intensive care unit treatment(15.9%).Besides,patients with Gilliam genotype(8 days)and TA763 genotype infection(7.5 days)had shorter fever duration than those with Karp genotype(9 days)and Kato genotype(9 days)infection,respectively.Conclusions:Genotypes of Orientia tsutsugamushi were associated with varying clinical manifestations,organ involvement,and treatment outcomes,suggesting that genotypes ranged in virulence.
基金supported by National Key Research and Development Program of China(2018YFA0108500)NSFC82341006,81673334,31970740,31801144,31800684 and 31701227+3 种基金Natural Science Foundation of Beijing(IS23071)Postdoctoral Research Foundation of China(2021M703206)Natural Science Foundation of Shanxi Province(202203021211155)the State Key Laboratory of Membrane Biology.
文摘Translesion DNA synthesis(TLS)can bypass DNA lesions caused by chemotherapeutic drugs,which usually result in drug resistance.Given its key role in mutagenesis and cell survival after DNA damage,inhibition of the TLS pathway has emerged as a potential target for improving the efficacy of DNA-damaging agents such as cisplatin(CDDP),a widely used anticancer agent.Unfortunately,few suitable natural TLS inhibitors have been reported.Here,we found that a triterpenoid compound Ganoboninketal C(26-3)from Ganoderma boninense,a traditional Chinese medicine,can impair CDDP-induced TLS polymerase eta(Polη)focus formation,PCNA monoubiquitination as well as mutagenesis.Moreover,26-3 can significantly sensitize tumor cells to CDDP killing and reduce the proportion of cancer stem cells in AGS and promote apoptosis after CDDP exposure.Interestingly,26-3 can also sensitize tumor cells to Gefitinib therapy.Mechanistically,through RNA-seq analysis,we found that 26-3 could abrogate the CDDP-induced upregulation of Polηand PIDD(p53-induced protein with a death domain),2 known factors promoting TLS pathway.Furthermore,we found that activating transcription factor 3 is a potential novel TLS modulator.Taken together,we have identified a natural TLS inhibitor 26-3,which can be potentially used as an adjuvant to improve clinical efficacy.
基金Supported by Projects of General Administration of Customs(2020HK159)Nanjing Customs Research Projects(2023KJ20).
文摘According to international standard plant quarantine measures and principle risk analysis(ISPM No.11),a risk assessment was carried out for Passalora sequoiae through geographical distribution,possibility of colonization,probability of diffusion,economic importance and difficulty in risk management.Results show that P.sequoiae has a greater risk of introduction and diffusion,and it has distributed in parts of China.It is suggested that P.sequoiae should be added to the list of forest dangerous pests in China.Besides,porting departments should focus on the pathogen on imported host seedlings like Cryptomeria.
文摘Jasmine essential oil and lemon essential oil were selected for deodorizing ingredient.Lysine and silver ions were selected as auxiliary raw material.The product was prepared by emulsion dissolution technology.The minimum inhibitory concentration of various bacteria were during 100~2,000 mg/L.In the test,the germicidal efficiency of 2.0%(w/w)deodorant was 99%.The removal efficiency of trimethylamine and methanthiol were more than 95%by 3.0%(w/w).deodorant.The removal efficiency of ammonia and methanthiol were more than 92%by 3.0%(w/w)deodorant.In addition,The removal efficiency of isovaleric acid was 98%by 2.0%(w/w)deodorant.In analysis result,common pathogenic bacteria were effectively suppressed,kitchen and toilet odors were efficiently removed by natural plant deodorant.
文摘The recent global spread of the pandemic underscores the necessity of seeking new materials effective against microorganisms. Nanotechnology offers avenues for developing multifunctional materials. In this study, alpha-titanium phosphate (α-TiP) nanoparticles were synthesized and treated with silver salt to enhance their antimicrobial properties. The physicochemical characteristics and antimicrobial activity were evaluated. It was revealed by X-ray diffraction analysis that the structural integrity of α-TiP was influenced by ethylenediamine and silver ions. Distinct degradation profiles for each chemical modification were shown by thermogravimetric analysis. Infrared spectroscopy detected shifts and new absorption peaks in the spectra depending on the type of modification. Energy dispersive spectroscopy confirmed the disaggregation of α-TiP galleries following the addition of silver salt, which increased their effectiveness against microorganisms. Notably, only the sample treated with silver ions exhibited antimicrobial action. Antimicrobial activity was tested against the bacteria of medical importance Escherichia coli, Salmonella Enteritidis, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus cereus, Listeria momocytogenes and the yeast Candida albicans. All microorganisms were inhibited by sample containing silver. Minor inhibition was observed against the Gram-positive bacteria L. monocytogenes and Bacillus cereus, while the greatest inhibition occurred against the fungus (yeast) C. albicans. The results revealed a potential application of the nanoparticles for control of microorganisms in public health.
基金supported generously by the U.S.National Science Foundation(Grant Nos.MCB-0546865 and OISE- 0968421 & OISE-0836450)National Natural Science Foundation of China(Grant No.31070007)
文摘The Rehai Geothermal Field, located in Tengchong County, in central-western Yunnan Prov- ince, is the largest and most intensively studied geothermal field in China. A wide physicochemical diversity of springs (ambient to -97 ℃; pH from 〈1.8 to≥9.3) provides a multitude of niches for extremophilic microorganisms. A variety of studies have focused on the cultivation, identification, basic physiology, taxonomy, and biotechnological potential of thermophilic microorganisms from Rehai. Ther- mophilic bacteria isolated from Rehai belong to the phyla Firmicutes and Deinococcus-Thermus. Firmicutes include neutrophilic or alkaliphilic Anoxybacillus, Bacillus, Caldalkalibacillus, Caldanaerobacter, Laceyella, and Geobacillus, as well as thermoacidophilic Alicyclobacillus and Sulfobacillus. Isolates from the Deinococcus-Thermus phylum include several Meiothermus and Thermus species. Many of these bacteria synthesize thermostable polymer-degrading enzymes that may be useful for biotech- nology. The thermoacidophilic archaea Acidianus, Metallosphaera, and Sulfolobus have also been isolated and studied. A few studies have reported the isolation of thermophilic viruses belonging to Siphoviridae (TTSP4 and TTSP10) and Fuselloviridae (STSV1) infecting Thermus spp. and Sulfolobus spp., respectively. More recently, cultivation-independent studies using 16S rRNA gene sequences, shotgun metagenomics, or "'functional gene" sequences have revealed a mtlch broader diversity of micro- organisms than represented in culture. Studies of the gene and mRNA encoding 113e large subunit of the ammonia monooxygenase (amoA) of ammonia-oxidizing Archaea (AOA) and the tetraether lipid cre- narchaeol, a potential hiomarker for AOA, suggest a wide diversity, but possibly low abundance, of ther- mophilic AOA in Rehai. Finally, we introduce the Tengchong Partnerships in International Research and Education (P1RE) project, an international collaboration between Chinese and U.S. scientists with the goal of promoting international and interdisciplinary cooperation to gain a more holistic and gh〉bal view of life in te^estrial geothermal springs.
文摘Objective:To synthesize zinc oxide nanoparticles(ZnONPs)and evaluate their antibacterial and wound healing effects against wounds infected with methicillin-resistant Staphylococcus aureus(MRSA).Methods:ZnONPs were prepared by sol-gel method and characterized by X-ray diffraction(XRD)analysis and scanning electron microscopy(SEM).A total of 18 rabbits were divided into three groups:the ZnONPs group,the gentamicin group and the control group.A wound of 3 cm^(2) was inflicted on each rabbit and contaminated with MRSA inoculum.Treatment was started from the fourth day post-surgery.Wound healing,microbiological analysis,and histopathological analysis were performed to assess the efficacy of ZnONPs ointment.Results:XRD analysis confirmed the hexagonal wurtzite structure of the ZnONPs with an average crystallite size of 29.23 nm.SEM revealed discoid-shaped ZnONPs with a rough surface and an average size of 48.36 nm.Energy-dispersive X-ray analysis confirmed the purity of ZnONPs.Moreover,the particle size ranged from 100-700 nm with a high agglomeration trend.Treatment with ZnONPs promoted MRSA-infected wound healing.In addition,ZnONPs showed a good antibacterial effect as evidenced by a dose-dependent increase in the zone of inhibition.Conclusions:ZnONPs accelerate the healing of MRSA-infected wounds.Therefore,it can be explored for the treatment of MRSA infection.
基金supported by the National Key Research and Development Program of China(2021YFC2102100)the National Natural Science Foundation of China(U20A20361,32271507,81930122,and 82171819)the Beijing Postdoctoral Research Foundation(2021-ZZ-035)。
文摘Brucellosis,caused by Brucella,is one of the most common zoonosis.However,there is still no vaccine for human use.Although some live attenuated vaccines have been approved for animals,the protection effect is not ideal.In this study,we developed a dual-antigen nanoconjugate vaccine containing both polysaccharide and protein antigens against Brucella.First,the antigenic polysaccharide was covalently coupled to the outer membrane protein Omp19 using protein glycan coupling technology,and then it was successfully loaded on a nano-carrier through the SpyTag/SpyCatcher system.After confirming the efficient immune activation and safety performance of the dual-antigen nanoconjugate vaccine,the potent serum antibody response against the two antigens and remarkable protective effect in non-lethal and lethal Brucella infection models were further demonstrated through different routes of administration.These results indicated that the dual-antigen nanoconjugate vaccine enhanced both T helper 1 cell(Th1)and Th2 immune responses and protected mice from Brucella infection.Furthermore,we found that this protective effect was maintained for at least 18 weeks.To our knowledge,this is the first Brucella vaccine bearing diverse antigens,including a protein and polysaccharide,on a single nanoparticle.Thus,we also present an attractive technology for co-delivery of different types of antigens using a strategy applicable to other vaccines against infectious diseases.
基金This work was funded by Guest Investigator Grant of the State Key Laboratory of Plant Genomics,Institute of Microbiology,Chinese Academy of Science(SKLPG2016A-29)。
文摘Rose(Rosa chinensis),which is an economically valuable floral species worldwide,has three types,namely once-flowering(OF),occasional or re-blooming(OR),and recurrent or continuous flowering(CF).However,the mechanism underlying the effect of the age pathway on the duration of the CF or OF juvenile phase is largely unknown.In this study,we observed that the RcSPL1 transcript levels were substantially upregulated during the floral development period in CF and OF plants.Additionally,accumulation of RcSPL1 protein was controlled by rch-miR156.The ectopic expression of RcSPL1 in Arabidopsis thaliana accelerated the vegetative phase transition and flowering.Furthermore,the transient overexpression of RcSPL1 in rose plants accelerated flowering,whereas silencing of RcSPL1 had the opposite phenotype.Accordingly,the transcription levels of floral meristem identity genes(APETALA1,FRUITFULL,and LEAFY)were significantly affected by the changes in RcSPL1 expression.RcTAF15b protein,which is an autonomous pathway protein,was revealed to interact with RcSPL1.The silencing and overexpression of RcTAF15b in rose plants led to delayed and accelerated flowering,respectively.Collectively,the study findings imply that RcSPL1–RcTAF15b modulates the flowering time of rose plants.
基金the financial support of the China Agriculture Research System of MOF and MARA-Food Legumes(CARS-08)the Agricultural Science and Technology Innovation Program(ASTIP)of the Chinese Academy of Agricultural Sciences。
文摘Pea(Pisum sativum L.)is an annual cool-season legume crop.Owing to its role in sustainable agriculture as both a rotation and a cash crop,its global market is expanding and increased production is urgently needed.For both technical and regulatory reasons,neither conventional nor transgenic breeding techniques can keep pace with the demand for increased production.In answer to this challenge,CRISPR/Cas9 genome editing technology has been gaining traction in plant biology and crop breeding in recent years.However,there are currently no reports of the successful application of the CRISPR/Cas9 genome editing technology in pea.We developed a transient transformation system of hairy roots,mediated by Agrobacterium rhizogenes strain K599,to validate the efficiency of a CRISPR/Cas9 system.Further optimization resulted in an efficient vector,PsU6.3-tRNA-PsPDS3-en35S-PsCas9.We used this optimized CRISPR/Cas9 system to edit the pea phytoene desaturase(PsPDS)gene,causing albinism,by Agrobacterium-mediated genetic transformation.This is the first report of successful generation of gene-edited pea plants by this route.
基金funded by the National Natural Science Foundation of China (31470496)the Fundamental Research Funds for the Central Universities, China (lzujbky-2021-sp42)the ‘111’ Programme 2.0, China (BP0719040)。
文摘Plastic film mulch in agricultural production becomes essential to maintaining crop yields in arid and semiarid areas.However,the presence of residual film in farmland soil has also drawn much attention.In this study,three experiments were conducted.The first two experimental designs included 0,450,1350,and 2700 kg ha^(-1) of residual film pieces of approximately 5 cm side length added to field soil(0-20 cm soil depth)for seven years and added to pots for four years.In the third experiment,1350 kg ha^(-1)of the residual film with different side lengths(2-5,5-10,10-15,and 15-20 cm)was added to field soil for six years to explore the effect of residual film fragment size on soil nutrients,soil microorganisms,crop growth and yields.The residual film had little effect on the soil moisture at a field depth of 0-2(or 0-1.8)m.There were no significant effects on organic carbon,total nitrogen,inorganic nitrogen,total phosphorus or available phosphorus in the 0-20 cm soil layer.The presence of residual film decreased the richness and diversity of the bacterial community of the surface soil of the residual film,but it had no significant effect on the microbial community of the non-surface soil.The emergence rates of wheat and lentils occasionally decreased significantly with different amounts of residue fragments added to the field.At 450-2700 kg ha^(-1),the residual film reduced the plant height and stem diameter of maize and significantly reduced the shoot biomass of harvested maize by 11-19%.The average yields of maize and potato over the seven years decreased,but there were almost no significant statistical differences among the treatments.These results provide important data for a comprehensive scientific understanding of the effects of residual film on soil and crops in dryland farming systems.
基金supported by the National Key Research & Development Program of China (2021YFC2101500, 2018YFA0902200)National Natural Science Foundation of China (22008115, 21978130)+4 种基金Jiangsu Province Natural Science Foundation for Youths (SBK2020044721)Jiangsu Provincial Agricultural Science and Technology Independent Innovation Fund Project (CX(21)3120)Jiangsu Planned Projects for Postdoctoral Research Funds (2021K085A)China Postdoctoral Science Foundation (2020M671467)Postdoctoral Research Funding Program of Jiangsu Province (2021K085A)
文摘Palmitoleic acid(POA)can be naturally found only in few oil seeds and has significant applications in pharmaceutical industry.Recently,the isolated oleaginous yeast Scheffersomyces segobiensis DSM 27193 was identified with high content of POA in its intracellular lipid(13.80%).In this study,process optimization focused on dissolved oxygen regulation to improve POA production was conducted.Dynamic agitation was found to do significant enhancement on POA-rich lipid production than aeration regulation.Under the best condition of 1000 r·min^(-1)of agitation and 1 vvm(airvolume/culture volume/min)of aeration,no ethanol was detected during the whole fermentation process,while a dry biomass concentration of 44.80 g·L^(-1)with 13.43 g·L^(-1)of lipid and 2.93 g·L^(-1)of POA was achieved.Transcription analysis revealed that the ethanol synthetic pathway was downregulated under the condition of high agitation,while the expression of the key enzymes responsible for lipid and POA accumulation were enhanced.
基金the State Key Laboratory of Pathogen and Biosecurity,No.SKLPBS2119 and SKLPBS2212the Medical Science Research Project of Dalian,No.2112015。
文摘BACKGROUND Formyl peptide receptor 2(Fpr2)is an important receptor in host resistance to bacterial infections.In previous studies,we found that the liver of Fpr2-/-mice is the most severely damaged target organ in bloodstream infections,although the reason for this is unclear.AIM To investigate the role of Fpr2 in liver homeostasis and host resistance to bacterial infections.METHODS Transcriptome sequencing was performed on the livers of Fpr2-/-and wild-type(WT)mice.Differentially expressed genes(DEGs)were identified in the Fpr2-/-and WT mice,and the biological functions of DEGs were analyzed by Gene Ontology(GO)and Kyoto Encyclopedia of Genes and Genomes(KEGG)enrichment analysis.Quantitative real time-polymerase chain reaction(qRT-PCR)and western blot(WB)analyses were used to further validate the expression levels of differential genes.Cell counting kit-8 assay was employed to investigate cell survival.The cell cycle detection kit was used to measure the distribution of cell cycles.The Luminex assay was used to analyze cytokine levels in the liver.The serum biochemical indices and the number of neutrophils in the liver were measured,and hepatic histopathological analysis was performed.RESULTS Compared with the WT group,445 DEGs,including 325 upregulated genes and 120 downregulated genes,were identified in the liver of Fpr2-/-mice.The enrichment analysis using GO and KEGG showed that these DEGs were mainly related to cell cycle.The qRT-PCR analysis confirmed that several key genes(CycA,CycB1,Cdc20,Cdc25c,and Cdk1)involved in the cell cycle had significant changes.The WB analysis confirmed a decrease in the expression of CDK1 protein.WRW4(an antagonist of Fpr2)could inhibit the proliferation of HepG2 cells in a concentration dependent manner,with an increase in the number of cells in the G0/G1 phase,and a decrease in the number of cells in the S phase.Serum alanine aminotransferase levels increased in Fpr2-/-mice.The Luminex assay measurements showed that interleukin(IL)-10 and chemokine(C-X-C motif)ligand(CXCL)-1 levels were significantly reduced in the liver of Fpr2-/-mice.There was no difference in the number of neutrophils,serum C-reactive protein levels,and liver pathology between WT and Fpr2-/-mice.CONCLUSION Fpr2 participates in the regulation of cell cycle and cell proliferation,and affects the expression of IL-10 and CXCL-1,thus playing an important protective role in maintaining liver homeostasis.
基金supported by the National Key R&D Program of China (2022YFC2303403)National Natural Science Foundation of China (82225021)supported by the Chinese Academy of Sciences (YSBR-010 and Y2022037)。
文摘Following the outbreak of coronavirus disease 2019(COVID-19),several severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)-related coronaviruses have been discovered.Previous research has identified a novel lineage of SARS-CoV-2-related CoVs in bats,including RsYN04,which recognizes human angiotensin-converting enzyme 2(ACE2)and thus poses a potential threat to humans.Here,we screened the binding of the RsYN04receptor-binding domain(RBD)to ACE2 orthologs from 52animal species and found that the virus showed a narrower ACE2-binding spectrum than SARS-CoV-2.However,the presence of the T484W mutation in the RsYN04 RBD broadened its range.We also evaluated 44 SARS-CoV-2antibodies targeting seven epitope communities in the SARS-CoV-2 RBD,together with serum obtained from COVID-19 convalescents and vaccinees,to determine their cross-reaction against RsYN04.Results showed that no antibodies,except for the RBD-6 and RBD-7 classes,bound to the RsYN04 RBD,indicating substantial immune differences from SARS-CoV-2.Furthermore,the structure of the RsYN04 RBD in complex with cross-reactive antibody S43 in RBD-7 revealed a potently broad epitope for the development of therapeutics and vaccines.Our findings suggest RsYN04 and other viruses belonging to the same clade have the potential to infect several species,including humans,highlighting the necessity for viral surveillance and development of broad anticoronavirus countermeasures.
基金supported by National Key Research and Development Program of China(2019YFC1200500)supported by Emergency Key Program of Guangzhou Laboratory(EKPG21-01)supported by National Natural Science Foundation of China(32070166)。
文摘The coronavirus disease 2019(COVID-19)pandemic caused by frequently mutating severe acute respiratory syndrome coronavirus 2(SARS-CoV-2)has had a worldwide impact.However,detailed data on the potential aerosol transmission of SARS-CoV-2 in real-world and controlled laboratory settings remain sparse.During the COVID-19 pandemic in Shanghai,China in 2022,samples were collected in a Fangcang shelter hospital,a large-scale temporary hospital rapidly built by converting the existing National Exhibition and Convention Center(Shanghai)into a health care facility.Aerosol samples at different sites and intervals around patients and in public areas,surface samples,and pharyngeal swab samples from corresponding patients were included.Samples were tested for SARS-CoV-2 using real-time quantitative polymerase chain reaction(RT-qPCR)assays,followed by sequencing if the cycle threshold(Ct)value was<30.The positivity rate for SARS-CoV-2 in aerosol samples was high in contaminated zones(37.5%,104/277),especially around the bed(41.2%,68/165)and near ventilation inlets(45.2%,14/31).The prevalence of SARS-CoV-2 around the bed,public areas,and air inlets of exhaust vents fluctuated and was closely related to the positivity rate among patients at corresponding sampling sites.Some surface samples of different personal protective equipment from medical staff had high positivity rates.Sixty sequences of joined ORF1ab and spike genes obtained from sixty samples represented two main clusters of Omicron SARS-CoV-2.There was consistency in virus sequences from the same patient and their environment,and the detected virus sequences matched those of virus strains in circulation during the collection periods,which indicated a high likelihood of cross-contamination in the Fangcang shelter hospital.In summary,the results provide a quantitative and real landscape of the aerosol transmission of SARS-CoV-2 and a patient-centered view of contamination in large and enclosed spaces and offer a useful guide for taking targeted measures to avoid nosocomial infections during the management of SARS-CoV-2 or other respiratory virus diseases in a Fangcang shelter hospital.
文摘In the Republic of Moldova, the viticulture industry is a sector with a high economic impact, and the utilization of secondary products from winemaking represents a growing concern regarding environmental sustainability. Wine lees, one of the types of wine waste, is less studied in order to valorize it. Currently it is used in the production of ethyl alcohol, as aggregates in the soil and others. The aim of this study was to characterize from a physico-chemical and microbiological point of view the lees sediments obtained after the primary fermentation of three types of individualized red wines made from autochthonous grapes varieties. It was found that residual yeasts represent a valuable raw material containing carbohydrates (from 14.35% ± 0.19% to 25.11% ± 1.51% SU), lipids (from 4.61% ± 0.21% to 9.41% ± 2.04% SU), proteins (from 42.62% ± 1.57% to 77.62% ± 9.14% SU), anthocyanins (from 9.18 ± 0.15 to 22.78 ± 1.60 mg cianid) and beta-glucans (from 12.84% ± 0.01% to 17.42% ± 0.02%). The pH value of wine lees ranges from 3.49 ± 0.0 to 3.083 ± 0.01, the dry matter from 9.62% ± 0.22% to 25.06% ± 0.42% and the ash from 0.03% ± 0.42% to 0.035% ± 0.21%. The microbiological study confirmed the presence of live yeasts of the genus Saccharomyces cerevisiae, which remain active due to the presence of residual sugars and oxygen. The results of the research are promising and encourage the obtaining of new products with special purpose and added value.