Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore mic...Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.展开更多
As a promising ultra-wide bandgap semiconductor material,gallium oxide(Ga_(2)O_(3))is attracting extensive attention of researchers due to its feasible growth process,appropriate bandgap of 4.4 e V-5.3 e V allowing fo...As a promising ultra-wide bandgap semiconductor material,gallium oxide(Ga_(2)O_(3))is attracting extensive attention of researchers due to its feasible growth process,appropriate bandgap of 4.4 e V-5.3 e V allowing for deep-ultraviolet(deepUV)detection,good physical and chemical stability,high breakdown field strength and electron mobility,etc.Different from the strict processes for controllable crystalline Ga_(2)O_(3)(usually refer to as stable monoclinicβ-Ga_(2)O_(3)),amorphous Ga_(2)O_(3)(a-Ga_(2)O_(3))film can be prepared uniformly at low temperature on a large-area deposition substrate,suggesting great advantages such as low manufacturing cost and excellent flexibility,dispensing with high-temperature and high vacuum techniques.Thus,a-Ga_(2)O_(3)extremely facilitates important applications in various applied fields.Therefore,in this concise review,we summarize several major deposition methods for a-Ga_(2)O_(3)films,of which the characteristics are discussed.Additionally,potential methods to optimize the film properties are proposed by right of the inspiration from some recent studies.Subsequently,the applications of a-Ga_(2)O_(3)thin films,e.g.,in photodetectors,resistive random access memories(RRAMs)and gas sensors,are represented with a fruitful discussion of their structures and operating mechanisms.展开更多
To date,the ability of nanoplatforms to achieve excellent therapeutic responses is hindered by short blood circulation and limited tumor accumulation/penetration.Herein,a soft mesoporous organosilica nanoplatform modi...To date,the ability of nanoplatforms to achieve excellent therapeutic responses is hindered by short blood circulation and limited tumor accumulation/penetration.Herein,a soft mesoporous organosilica nanoplatform modified with hyaluronic acid and cyanine 5.5 are prepared,denoted SMONs-HA-Cy5.5,and comparative studies between SMONs-HA-Cy5.5(24.2 MPa)and stiff counterparts(79.2 MPa)are conducted.Results indicate that,apart from exhibiting a twofold increase in tumor cellular uptake,the soft nanoplatforms also display a remarkable pharmacokinetic advantage,resulting in considerably improved tumor accumulation.Moreover,SMONs-HA-Cy5.5 exhibits a significantly higher tumor penetration,achieving 30-μm deeper tissue permeability in multicellular spheroids relative to the stiff counterparts.Results further reveal that the soft nanoplatforms have an easier extravasation from the tumor vessels,diffuse farther in the dense extracellular matrix,and reach deeper tumor tissues compared to the stiff ones.Specifically,the soft nanoplatforms generate a 16-fold improvement(43 vs.2.72μm)in diffusion distance in tumor parenchyma.Based on the significantly improved blood circulation and tumor accumulation/penetration,a soft therapeutic nanoplatform is constructed by loading photosensitizer chlorin e6 in SMONs-HA-Cy5.5.The resulting nanoplatform exhibits considerably higher therapeutic efficacy on tumors compared to the stiff ones.展开更多
Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the di...Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the distributed feedback gratings for fine tuning the lasing wavelength. Notably, elastic lasers based on three typical light-emitting molecules show com-parable lasing threshold values analogous to rigid devices and a continuous wavelength tunability of about 10 nm by mechanic-al stretching. In addition, the stretchability provides a simple solution for dynamically tuning the lasing wavelength in a spec-tral range that is challenging to achieve for inorganic counterparts. Our work has provided a simple and efficient method of fab-ricating tunable organic lasers that depend on stretchable distributed feedback gratings, demonstrating a significant step in the advancement of flexible organic optoelectronic devices.展开更多
The heteroatom doping strategies have been utilized to effectively improve the performance of the carbon-based hosts,such as graphene,for lithium(Li)metal in high energy density lithium metal batteries.However,solely ...The heteroatom doping strategies have been utilized to effectively improve the performance of the carbon-based hosts,such as graphene,for lithium(Li)metal in high energy density lithium metal batteries.However,solely doped graphene hosts often need the assistance of other materials with either better lithiophilicity or electronic conductance to achieve smooth and efficient deposition of Li,which adds extra weight or volume.Herein,graphene co-doped by nitrogen and fluorine(NFG)is employed as a stable host for Li,where the N-doping provides lithiophilicity and electronic conductivity lacked by F-doping and the F-doping facilitates fast formation of solid electrolyte interphase(SEI)retarded by N-doping.The well regulation of Li plating/stripping and SEI formation is verified by quickly stabilized and small-magnitude voltage hysteresis,which stands out in Li hosts based on doped graphene and leads to excellent long-term cycling performance of NFG based electrodes.A voltage hysteresis of 20 mV is observed for more than 850 h in the symmetrical cell.The remarkable efficiency of lithium usage is confirmed by the highcapacity retention of a full cell paired with LiFePO_(4)(LFP),which exceeds 70%after 500 cycles.This work presents an innovative perspective on the control of Li plating/stripping by simultaneously introducing two kinds of dopants into graphene and paving the way for exploring practical Li metal batteries.展开更多
Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memri...Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units.Mimicking synaptic functions with these devices is critical in neuromorphic systems.In the last decade,electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions.In this review,these devices are discussed by categorizing them into electrically stimulated,optically stimulated,and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals.The working mechanisms of the devices are analyzed in detail.This is followed by a discussion of the progress in mimicking synaptic functions.In addition,existing application scenarios of various synaptic devices are outlined.Furthermore,the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected.展开更多
Objective To evaluate the efficacy of cis-2-dodecenoic acid(BDSF) in the treatment and prevention of vaginal candidiasis in vivo. Methods The activities of different concentrations of BDSF against the virulence factor...Objective To evaluate the efficacy of cis-2-dodecenoic acid(BDSF) in the treatment and prevention of vaginal candidiasis in vivo. Methods The activities of different concentrations of BDSF against the virulence factors of Candida albicans(C. albicans) were determined in vitro. An experimental mouse model of Candida vaginitis was treated with 250 μmol/L BDSF. Treatment efficiency was evaluated in accordance with vaginal fungal burden and inflammation symptoms. Results In vitro experiments indicated that BDSF attenuated the adhesion and damage of C. albicans to epithelial cells by decreasing phospholipase secretion and blocking filament formation. Treatment with 30 μmol/L BDSF reduced the adhesion and damage of C. albicans to epithelial cells by 36.9% and 42.3%, respectively. Treatment with 200 μmol/L BDSF completely inhibited phospholipase activity. In vivo mouse experiments demonstrated that BDSF could effectively eliminate vaginal infection and relieve inflammatory symptoms. Four days of treatment with 250 μmol/L BDSF reduced vaginal fungal loads by 6-fold and depressed inflammation. Moreover, BDSF treatment decreased the expression levels of the inflammatory chemokine-associated genes MCP-1 and IGFBP3 by 2.5-and 2-fold, respectively. Conclusion BDSF is a novel alternative drug that can efficiently control vaginal candidiasis by inhibiting the virulence factors of C. albicans.展开更多
In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, ...In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.展开更多
A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consum...A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.展开更多
In this study, we designed and applied proteinmimicking nanoparticles(Protmin) as an intracellular nanosensor for in vivo detection of lead ions(Pb^(2+)).Monodispersed gold nanoparticles(Au NPs) of 13 nm in diameter w...In this study, we designed and applied proteinmimicking nanoparticles(Protmin) as an intracellular nanosensor for in vivo detection of lead ions(Pb^(2+)).Monodispersed gold nanoparticles(Au NPs) of 13 nm in diameter were modified using poly-adenine-tailed Pb^(2+)-specific 8–17 DNAzyme to form a spherical and functional Protmin. Substrate strands modified with a fluorophore at the 50 end and a quencher at the 30 end were bound to DNAzyme. Pb^(2+) facilitated cleavage of DNAzyme to release the fluorophore-modified short strands to generate fluorescence. We observed rapid kinetics of the Protmin nanosensor, for which the typical assay time was 10 min.Further, we demonstrated the Protmin nanosensor could readily enter living cells and respond to Pb^(2+) in the intracellular environment. The broad of range of Protmindesigns will be useful for advancing biological and medical applications.展开更多
Bottom-emitting organic light-emitting diodes (BOLEDs), using AI/MoO3 as the semitransparent anode and LiF/Al as the reflective cathode and Alqa as the emitter, are fabricated. At the same time, the performance impr...Bottom-emitting organic light-emitting diodes (BOLEDs), using AI/MoO3 as the semitransparent anode and LiF/Al as the reflective cathode and Alqa as the emitter, are fabricated. At the same time, the performance improvement of the BOLEDs having a capping layer inserted between the semitransparent anode and the glass substrate is studied. The optimized microcavity BOLED shows a current efficiency (5.49cd/A) enhancement of 10% compared with a conventional BOLED based on ITO (5.0cd/A). Slight color variation is observed in 120° forward viewing angle with 5Onto BCP as the capping layer. Strong dependence of efficiency on A1 anode thickness and the thickness and refractor index of the capping layer is explained. The results indicate that the BOLEDs with the double-aluminum electrode have potential practical applications.展开更多
Utilizing the periodically structured metal-organic framework (MOF) as the reaction vessel is a promising technique to achieve the aligned polymer molecular chains, where the diffusion procedure of the polymer monom...Utilizing the periodically structured metal-organic framework (MOF) as the reaction vessel is a promising technique to achieve the aligned polymer molecular chains, where the diffusion procedure of the polymer monomer inside MOF is one of the key mechanisms. To investigate the diffusion mechanism of fluorinated polymer monomers in MOFs, in this paper the molecular dynamics simulations combined with the density functional theory and the Monte Carlo method are used and the all-atom models of TFMA (trifluoroethyl methacrylate) monomer and two types of MOFs,[Zn2(BDC)2(TED)]n and[Zn2(BPDC)2(TED)]n, are established. The diffusion behaviors of TFMA monomer in these two MOFs are simulated and the main influencing factors are analyzed. The obtained results are as follows. First, the electrostatic interactions between TFMA monomers and MOFs cause the monomers to concentrate in the MOF channel, which slows down the monomer diffusion. Second, the anisotropic shape of the one-dimensional MOF channel leads to different diffusion speeds of monomers in different directions. Third, MOF with a larger pore diameter due to a longer organic ligand,[Zn2(BPDC)2(TED)]n in this paper, facilitates the diffusion of monomers in the MOF channel. Finally, as the number of monomers increases, the self-diffusion coefficient is reduced by the steric effect.展开更多
In the post-Moore era,neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks.Memristors have been proposed as a key part of neuromorphic computing architectures,and can be used to emula...In the post-Moore era,neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks.Memristors have been proposed as a key part of neuromorphic computing architectures,and can be used to emulate the synaptic plasticities of the human brain.Ferroelectric memristors represent a breakthrough for memristive devices on account of their reliable nonvolatile storage,low write/read latency and tunable conductive states.However,among the reported ferroelectric memristors,the mechanisms of resistive switching are still under debate.In addition,there needs to be more research on emulation of the brain synapses using ferroelectric memristors.Herein,Cu/PbZr_(0.52)Ti_(0.48)O_(3)(PZT)/Pt ferroelectric memristors have been fabricated.The devices are able to realize the transformation from threshold switching behavior to resistive switching behavior.The synaptic plasticities,including excitatory post-synaptic current,paired-pulse facilitation,paired-pulse depression and spike time-dependent plasticity,have been mimicked by the PZT devices.Furthermore,the mechanisms of PZT devices have been investigated by first-principles calculations based on the interface barrier and conductive filament models.This work may contribute to the application of ferroelectric memristors in neuromorphic computing systems.展开更多
The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization...The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization of thickness of ZnO covered on Au NRs, a high-power conversion efficiency of 3.60% and an enhanced short-circuit current density (Jsc) of 10.87 mA/cm2 are achieved in the poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM)- based inverted cell and the power conversion efficiency (PCE) is enhanced by 19.6% compared with the control device. The detailed analyses of the light absorption characteristics, the simulated scattering induced by Au NRs, and the electromag- netic field around Au NRs show that the absorption improvement in the photoactive layer due to the light scattering from the longitudinal axis and the near-field increase around Au NRs induced by localized surface plasmon resonance plays a key role in enhancing the performances.展开更多
In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhanceme...In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni(30 nm)/MgF 2(62 nm)/ZnS(16 nm)/Ni(20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A(at 62.3 mA/cm 2) together with a very stable chromaticity.The contrast ratio reaches 561:1 at an on-state brightness of 1000 cd/m^2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can also enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects.展开更多
The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO_(2) are investigated.After the modification of the gold contact electrodes of the carbon nanotube transistors w...The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO_(2) are investigated.After the modification of the gold contact electrodes of the carbon nanotube transistors with the thiolated heme,the NO_(2) sensing results indicate that the sensing sensitivity of the modified transistors is enhanced greatly and the sensing limit can reach below 100 ppb.It is also proposed that the mechanism of the sensitivity enhancement for NO_(2) detection mainly results from the modulation of the Schottky energy barrier at the Au/CNTs junction upon thiolated heme facilitated NO_(2) adsorption.展开更多
Stable organic field effect transistors(OFETs)based on copper phthalocyanine(CuPc)are reported using MoO_(3)/Al as source-drain top contacts.By annealing the fabricated device at 130℃ in air,the mobility and the stab...Stable organic field effect transistors(OFETs)based on copper phthalocyanine(CuPc)are reported using MoO_(3)/Al as source-drain top contacts.By annealing the fabricated device at 130℃ in air,the mobility and the stability of the OFETs can be significantly improved in comparison with the untreated device.The heat-treated devices without encapsulation show a device storage stability of nearly 400 h while the untreated one only 183 h.This improvement is suggested to be mainly attributed to the reduction of the contact barrier between CuPc and the electrode,as well as the better alignment of CuPc molecules via post annealing.展开更多
Chalcopyrite,copper indium gallium selenide(Cu(In,Ga)Se_(2),CIGS),as semiconductor materials,have been widely used as absorbers in thin-film solar cells,offering high power conversion efficiency(PCE)and good thermal s...Chalcopyrite,copper indium gallium selenide(Cu(In,Ga)Se_(2),CIGS),as semiconductor materials,have been widely used as absorbers in thin-film solar cells,offering high power conversion efficiency(PCE)and good thermal stability[1−3].Recently,the development of non-traditional photovoltaic(PV)devices such as semitransparent.展开更多
π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance a...π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance and stability of deep-blue polymer light-emitting diodes(PLEDs).Herein,considerate of“defect”carbazole(Cz)electromers in poly(N-vinylcarbazole)(PVK),a series of fluorene units are introduced into pendant segments(PVCz-DMeF,PVCz-FMeNPh and PVCz-DFMeNPh)to suppress the strongπ-electron coupling of pendant Cz units and enhance radiative transition toward fabricating sable PLEDs.Compared to PVCz-FMeNPh and PVCz-DFMeNPh,PVCz-DMeF spin-coated films show a relatively efficient deep-blue emission,completely similar to its single pendant chromophore,confirmed an extremely weak charge-transfer and electron coupling between adjacent pendant segments.Therefore,PLEDs based on PVCz-DMeF present stable and deep-blue emission with a high color purity(0.17,0.08),associated with extremely weak defect emission at 600∼700nm(induced by carbazole electromers).Finally,PLEDs based on PVCz-DMeF/F8BT blended films(1:1)also present the high maximum luminance(Lmax)of 6261 cd/m2 and current efficiency(CE_(max))of 2.03 cd/A,confirmed slightly trapped sites formation.Therefore,precisely control the arrangement and packing model of pendant units inπ-stacked polymer is an essential prerequisite for building efficient and stable emitter for optoelectronic devices.展开更多
Microbubbles(MBs)are gas-filled micrometer-scale spheres that are commonly formed by the gas core encapsulated with stabilizing shells,including polymers,surfactants,proteins,or liposomes shells.Clinically,MBs were or...Microbubbles(MBs)are gas-filled micrometer-scale spheres that are commonly formed by the gas core encapsulated with stabilizing shells,including polymers,surfactants,proteins,or liposomes shells.Clinically,MBs were originally used as contrast agents for enhanced ultrasound(US)imaging and diagnostics.Nowadays,MBs were given expectations that they can be alternative platforms for drug delivery owing to their unique acoustic properties.MBs can respond to the US by cavitation effect which refers to a series of complex dynamic processes,such as oscillation,expansion,contraction,and implosion[1].Drug molecules or therapeutic agents can be associated with the MB shells by means of van-der-Waals forces,electrostatic or hydrophobic interactions,or merely by physical encapsulation[2].Therefore,strategies are emerging which take advantages of US-mediated MBs drug delivery systems,mainly focusing on sonothrombolysis,cancer therapy and central nervous system(CNS)pathologies[3].Nevertheless,several researchers have apperceived the promising potential of US-responsive MBs in antibacterial therapy.Here,we aimed to paint an overview of the latest published papers on MBs for antibacterial therapy,hoping to help understand the perspectives that the field may offer emerging generations of antibacterial agents.展开更多
基金This research was supported by Natural Science Foundation of Jiangsu Province(BK20220405)National Natural Science Foundation of China(21834004,22276100,22304086)+5 种基金Key Laboratory for Organic Electronics&Information Displays,NJUPT(GZR2022010010,GZR2023010045)Nanjing Science and Technology Innovation Project for Chinese Scholars Studying Abroad(NJKCZYZZ2022-01)Research Fund for Jiangsu Distinguished Professor(RK030STP22001)Natural Science Research Start-up Foundation of Recruiting Talents of NJUPT(NY221006,NY223051)Natural Science Foundation of the Jiangsu Higher Education Institutions of China(23KJB150025)State Key Laboratory of Analytical Chemistry for Life Science,Nanjing University(SKLACLS2311).
文摘Covalent organic frameworks(COFs),a rapidly developing category of crystalline conjugated organic polymers,possess highly ordered structures,large specific surface areas,stable chemical properties,and tunable pore microenvironments.Since the first report of boroxine/boronate ester-linked COFs in 2005,COFs have rapidly gained popularity,showing important application prospects in various fields,such as sensing,catalysis,separation,and energy storage.Among them,COFs-based electrochemical(EC)sensors with upgraded analytical performance are arousing extensive interest.In this review,therefore,we summarize the basic properties and the general synthesis methods of COFs used in the field of electroanalytical chemistry,with special emphasis on their usages in the fabrication of chemical sensors,ions sensors,immunosensors,and aptasensors.Notably,the emerged COFs in the electrochemiluminescence(ECL)realm are thoroughly covered along with their preliminary applications.Additionally,final conclusions on state-of-the-art COFs are provided in terms of EC and ECL sensors,as well as challenges and prospects for extending and improving the research and applications of COFs in electroanalytical chemistry.
基金Project supported by the National Key Research and Development Program of China(Grant No.2022YFB3605404)the National Natural Science Foundation of China(Grant Nos.62204126 and 62204125)+1 种基金the Natural Science Research Start-up Foundation of Recruiting Talents of Nanjing University of Posts and Telecommunications(Grant Nos.XK1060921119,XK1060921002,and XK1060921115)the Open Fund of the Key Laboratory of Aerospace Information Materials and Physics(NUAA)MIIT。
文摘As a promising ultra-wide bandgap semiconductor material,gallium oxide(Ga_(2)O_(3))is attracting extensive attention of researchers due to its feasible growth process,appropriate bandgap of 4.4 e V-5.3 e V allowing for deep-ultraviolet(deepUV)detection,good physical and chemical stability,high breakdown field strength and electron mobility,etc.Different from the strict processes for controllable crystalline Ga_(2)O_(3)(usually refer to as stable monoclinicβ-Ga_(2)O_(3)),amorphous Ga_(2)O_(3)(a-Ga_(2)O_(3))film can be prepared uniformly at low temperature on a large-area deposition substrate,suggesting great advantages such as low manufacturing cost and excellent flexibility,dispensing with high-temperature and high vacuum techniques.Thus,a-Ga_(2)O_(3)extremely facilitates important applications in various applied fields.Therefore,in this concise review,we summarize several major deposition methods for a-Ga_(2)O_(3)films,of which the characteristics are discussed.Additionally,potential methods to optimize the film properties are proposed by right of the inspiration from some recent studies.Subsequently,the applications of a-Ga_(2)O_(3)thin films,e.g.,in photodetectors,resistive random access memories(RRAMs)and gas sensors,are represented with a fruitful discussion of their structures and operating mechanisms.
基金supported by National Key Basic Research Program of China(973 Program),China(2014CB744504)the National Natural Science Foundation of China,China(81971675,21603106 and 81971681)the Natural Science Foundation of Jiangsu Province,China(BK20160017)。
文摘To date,the ability of nanoplatforms to achieve excellent therapeutic responses is hindered by short blood circulation and limited tumor accumulation/penetration.Herein,a soft mesoporous organosilica nanoplatform modified with hyaluronic acid and cyanine 5.5 are prepared,denoted SMONs-HA-Cy5.5,and comparative studies between SMONs-HA-Cy5.5(24.2 MPa)and stiff counterparts(79.2 MPa)are conducted.Results indicate that,apart from exhibiting a twofold increase in tumor cellular uptake,the soft nanoplatforms also display a remarkable pharmacokinetic advantage,resulting in considerably improved tumor accumulation.Moreover,SMONs-HA-Cy5.5 exhibits a significantly higher tumor penetration,achieving 30-μm deeper tissue permeability in multicellular spheroids relative to the stiff counterparts.Results further reveal that the soft nanoplatforms have an easier extravasation from the tumor vessels,diffuse farther in the dense extracellular matrix,and reach deeper tumor tissues compared to the stiff ones.Specifically,the soft nanoplatforms generate a 16-fold improvement(43 vs.2.72μm)in diffusion distance in tumor parenchyma.Based on the significantly improved blood circulation and tumor accumulation/penetration,a soft therapeutic nanoplatform is constructed by loading photosensitizer chlorin e6 in SMONs-HA-Cy5.5.The resulting nanoplatform exhibits considerably higher therapeutic efficacy on tumors compared to the stiff ones.
基金financial support from the National Natural Science Foundation of China (21835003, 91833304,21422402, 62274097, 21674050, 62004106)the National Key Basic Research Program of China (2014CB648300,2017YFB0404501)+11 种基金the Natural Science Foundation of Jiangsu Province (BE2019120, BK20160888)Program for Jiangsu Specially-Appointed Professor (RK030STP15001)the Six Talent Peaks Project of Jiangsu Province (TD-XCL-009)the333 Project of Jiangsu Province (BRA2017402)the Natural Science Foundation of the Jiangsu Higher Education Institutions of China (20KJB140005)China Postdoctoral Science Foundation (2020M671553)the NUPT"1311 Project"and Scientific Foundation (NY217169, NY215062, NY215107,NY217087)the Leading Talent of Technological Innovation of National Ten-Thousands Talents Program of Chinathe Excellent Scientific and Technological Innovative Teams of Jiangsu Higher Education Institutions (TJ217038)the Postgraduate Research&Practice Innovation Program of Jiangsu Province (SJCX21-0297)the Synergetic Innovation Center for Organic Electronics and Information Displaysthe Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)
文摘Wavelength-tunable organic semiconductor lasers based on mechanically stretchable polydimethylsiloxane (PDMS) gratings were developed. The intrinsic stretchability of PDMS was explored to modulate the period of the distributed feedback gratings for fine tuning the lasing wavelength. Notably, elastic lasers based on three typical light-emitting molecules show com-parable lasing threshold values analogous to rigid devices and a continuous wavelength tunability of about 10 nm by mechanic-al stretching. In addition, the stretchability provides a simple solution for dynamically tuning the lasing wavelength in a spec-tral range that is challenging to achieve for inorganic counterparts. Our work has provided a simple and efficient method of fab-ricating tunable organic lasers that depend on stretchable distributed feedback gratings, demonstrating a significant step in the advancement of flexible organic optoelectronic devices.
基金the National Natural Science Foundation of China(No.62174087)Jiangsu National Synergetic Innovation Center for Advanced Materials(SICAM),Synergistic Innovation Center for Organic Electronics and Information Displays,Natural Science Foundation of Nanjing University of Posts and Telecommunications(No.NY222153)Basic Science and Technology Research Project of Wenzhou(No.G2023010).
文摘The heteroatom doping strategies have been utilized to effectively improve the performance of the carbon-based hosts,such as graphene,for lithium(Li)metal in high energy density lithium metal batteries.However,solely doped graphene hosts often need the assistance of other materials with either better lithiophilicity or electronic conductance to achieve smooth and efficient deposition of Li,which adds extra weight or volume.Herein,graphene co-doped by nitrogen and fluorine(NFG)is employed as a stable host for Li,where the N-doping provides lithiophilicity and electronic conductivity lacked by F-doping and the F-doping facilitates fast formation of solid electrolyte interphase(SEI)retarded by N-doping.The well regulation of Li plating/stripping and SEI formation is verified by quickly stabilized and small-magnitude voltage hysteresis,which stands out in Li hosts based on doped graphene and leads to excellent long-term cycling performance of NFG based electrodes.A voltage hysteresis of 20 mV is observed for more than 850 h in the symmetrical cell.The remarkable efficiency of lithium usage is confirmed by the highcapacity retention of a full cell paired with LiFePO_(4)(LFP),which exceeds 70%after 500 cycles.This work presents an innovative perspective on the control of Li plating/stripping by simultaneously introducing two kinds of dopants into graphene and paving the way for exploring practical Li metal batteries.
基金This work was supported by the National Natural Science Foundation of China(11804166,U1732126,51872145)the China Postdoctoral Science Foundation(2018M630587)+1 种基金the Natural Science Foundation of Jiangsu Province(BK20200760,BK20191472)the Introduction of Talents Project of Nanjing University of Posts and Telecommunications(NY220097).
文摘Neuromorphic computing simulates the operation of biological brain function for information processing and can potentially solve the bottleneck of the von Neumann architecture.This computing is realized based on memristive hardware neural networks in which synaptic devices that mimic biological synapses of the brain are the primary units.Mimicking synaptic functions with these devices is critical in neuromorphic systems.In the last decade,electrical and optical signals have been incorporated into the synaptic devices and promoted the simulation of various synaptic functions.In this review,these devices are discussed by categorizing them into electrically stimulated,optically stimulated,and photoelectric synergetic synaptic devices based on stimulation of electrical and optical signals.The working mechanisms of the devices are analyzed in detail.This is followed by a discussion of the progress in mimicking synaptic functions.In addition,existing application scenarios of various synaptic devices are outlined.Furthermore,the performances and future development of the synaptic devices that could be significant for building efficient neuromorphic systems are prospected.
基金financially supported by the National Natural Science Foundation of China [81273409]the Program for Changjiang Scholars and Innovative Research Team in University [IRT_15R37]the Ministry of Science and Technology of China [2017YFA0205301]
文摘Objective To evaluate the efficacy of cis-2-dodecenoic acid(BDSF) in the treatment and prevention of vaginal candidiasis in vivo. Methods The activities of different concentrations of BDSF against the virulence factors of Candida albicans(C. albicans) were determined in vitro. An experimental mouse model of Candida vaginitis was treated with 250 μmol/L BDSF. Treatment efficiency was evaluated in accordance with vaginal fungal burden and inflammation symptoms. Results In vitro experiments indicated that BDSF attenuated the adhesion and damage of C. albicans to epithelial cells by decreasing phospholipase secretion and blocking filament formation. Treatment with 30 μmol/L BDSF reduced the adhesion and damage of C. albicans to epithelial cells by 36.9% and 42.3%, respectively. Treatment with 200 μmol/L BDSF completely inhibited phospholipase activity. In vivo mouse experiments demonstrated that BDSF could effectively eliminate vaginal infection and relieve inflammatory symptoms. Four days of treatment with 250 μmol/L BDSF reduced vaginal fungal loads by 6-fold and depressed inflammation. Moreover, BDSF treatment decreased the expression levels of the inflammatory chemokine-associated genes MCP-1 and IGFBP3 by 2.5-and 2-fold, respectively. Conclusion BDSF is a novel alternative drug that can efficiently control vaginal candidiasis by inhibiting the virulence factors of C. albicans.
基金Project supported by the National Key Basic Research and Development Program of China(Grant No.2009CB930600)the National Natural Science Founda-tion of China(Grant Nos.61274065,60907047,51173081,and 61136003)the"333"and"Qing Lan"Program of Jiangsu Province,and the"Qing Lan"and"Pandeng"Project of Nanjing University of Posts and Telecommunications(Grant Nos.NY210040,NY211069,and NY 210015)
文摘In this paper, an MoOx film is deposited on a polyethylene terephthalate (PET) substrate as a buffer layer to improve the surface roughness of the flexible PET substrate. With an optimized MoOx thickness of 100 nm, the surface roughness of the PET substrate can be reduced to a very small value of 0.273 nm (much less than 0.585 nm of the pure PET). Flexible white top-emitting organic light-emitting diodes (TEOLEDs) with red and blue dual phosphorescent emitting layers are constructed based on a low-reflectivity Sm/Ag semi-transparent cathode. The flexible white emission exhibits the best luminance and current injection characteristics with the 100-nm-thick MoOx buffer layer and this result indicates that a smooth substrate is beneficial to the enhancement of device electrical and electroluminescence performances. However, the white TEOLED with a 50-nm-thick MoOx buffer layer exhibits a maximum current efficiency of 4.64 cd/A and a power efficiency of 1.9 lm/W, slightly higher than those with a 100-nm MoOx buffer layer, which is mainly due to an obvious intensity enhancement but limited current increases in 50-nm MoOx-based white TEOLED. The change amplitudes of the Commission International de l’Eclairage (CIE) chromaticity coordinates are less than (0.016, 0.005) for all devices in a wide luminance range over 100 cd/m2, indicating an excellent color stability in our white flexible TEOLEDs. Additionally, the flexible white TEOLED with an MoOx buffer layer shows excellent flexibility to withstand more than 500 bending times under a curvature radius of approximately 9 mm. Research demonstrates that it is mainly attributed to the high surface energy of the MoOx buffer layer, which is conducible to the improvement of the surface adhesion to the PET substrate and the Ag anode.
基金Supported by the Nanjing University of Telecommunication and Posts under Grant No NY212010the National Natural Science Foundation of China under Grant Nos 91233117,50973104 and 51333007+2 种基金the Natural Science Fund of Jiangsu Province under Grant No BK2012834the National Basic Research Program of China under Grant No 2015CB932200the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘A high-efficiency green phosphorescent organic light emitting diode with a simplified structure is achieved that is free of a hole transport layer. The design of this kind of device structure not only saves the consumption of organic materials but also greatly reduces the structural heterogeneities and effectively facilitates the charge injection into the emissive layer. The resulting green phosphorescent organic light-emitting diodes (PHOLEDs) exhibit higher electroluminescent efficiency. The maximum external quantum efficiency and current efficiency reach 23.7% and 88 cd/A, respectively. Moreover the device demonstrates satisfactory stability, keeping 23.7% and 88cd/A, 22% and 82cd/A, respectively, at a luminance of 100 and 1000cd/m2. The working mechanism for achieving high efficiency based on such a simple device structure is discussed correspondingly. The improved charge carrier injection and transport balance are proved to prominently contribute to achieve the high efficiency and great stability at high luminance in the green PHOLEDs.
基金supported by the National Natural Science Foundation of China(Nos.21390414 and 21605087)the Chinese Academy of Sciences(No.QYZDJ-SSW-SLH031)+2 种基金the China Postdoctoral Science Foundation funded project(No.BX201700123)the Scientific Research Foundation of Nanjing University of Posts and Telecommunications(No.NY215058)the Natural Science Fund for Colleges and Universities in Jiangsu Province(16KJB150032)
文摘In this study, we designed and applied proteinmimicking nanoparticles(Protmin) as an intracellular nanosensor for in vivo detection of lead ions(Pb^(2+)).Monodispersed gold nanoparticles(Au NPs) of 13 nm in diameter were modified using poly-adenine-tailed Pb^(2+)-specific 8–17 DNAzyme to form a spherical and functional Protmin. Substrate strands modified with a fluorophore at the 50 end and a quencher at the 30 end were bound to DNAzyme. Pb^(2+) facilitated cleavage of DNAzyme to release the fluorophore-modified short strands to generate fluorescence. We observed rapid kinetics of the Protmin nanosensor, for which the typical assay time was 10 min.Further, we demonstrated the Protmin nanosensor could readily enter living cells and respond to Pb^(2+) in the intracellular environment. The broad of range of Protmindesigns will be useful for advancing biological and medical applications.
基金Supported by the Nanjing University of Telecommunications and Posts under Grant Nos NY212010 and NY212034the National Natural Science Foundation of China under Grant Nos 91233117 and 51333007+2 种基金the Natural Science Fund in Jiangsu Province under Grant No BK2012834the National Basic Research Program of China under Grant No 2015CB932200the Priority Academic Program Development of Jiangsu Higher Education Institutions
文摘Bottom-emitting organic light-emitting diodes (BOLEDs), using AI/MoO3 as the semitransparent anode and LiF/Al as the reflective cathode and Alqa as the emitter, are fabricated. At the same time, the performance improvement of the BOLEDs having a capping layer inserted between the semitransparent anode and the glass substrate is studied. The optimized microcavity BOLED shows a current efficiency (5.49cd/A) enhancement of 10% compared with a conventional BOLED based on ITO (5.0cd/A). Slight color variation is observed in 120° forward viewing angle with 5Onto BCP as the capping layer. Strong dependence of efficiency on A1 anode thickness and the thickness and refractor index of the capping layer is explained. The results indicate that the BOLEDs with the double-aluminum electrode have potential practical applications.
基金Project supported by the National Natural Science Foundation of China(Grant No.61575096)
文摘Utilizing the periodically structured metal-organic framework (MOF) as the reaction vessel is a promising technique to achieve the aligned polymer molecular chains, where the diffusion procedure of the polymer monomer inside MOF is one of the key mechanisms. To investigate the diffusion mechanism of fluorinated polymer monomers in MOFs, in this paper the molecular dynamics simulations combined with the density functional theory and the Monte Carlo method are used and the all-atom models of TFMA (trifluoroethyl methacrylate) monomer and two types of MOFs,[Zn2(BDC)2(TED)]n and[Zn2(BPDC)2(TED)]n, are established. The diffusion behaviors of TFMA monomer in these two MOFs are simulated and the main influencing factors are analyzed. The obtained results are as follows. First, the electrostatic interactions between TFMA monomers and MOFs cause the monomers to concentrate in the MOF channel, which slows down the monomer diffusion. Second, the anisotropic shape of the one-dimensional MOF channel leads to different diffusion speeds of monomers in different directions. Third, MOF with a larger pore diameter due to a longer organic ligand,[Zn2(BPDC)2(TED)]n in this paper, facilitates the diffusion of monomers in the MOF channel. Finally, as the number of monomers increases, the self-diffusion coefficient is reduced by the steric effect.
基金Jiangsu Province Research Foundation(Grant Nos.BK20191202,RK106STP18003,and SZDG2018007)the Jiangsu Province Research Foundation(Grant Nos.BK20191202,RK106STP18003,and SZDG2018007)+1 种基金the Research Innovation Program for College Graduates of Jiangsu Province(Grant Nos.KYCX200806,KYCX190960,and SJCX190268)NJUPTSF(Grant Nos.NY217116,NY220078,and NY218107)。
文摘In the post-Moore era,neuromorphic computing has been mainly focused on breaking the von Neumann bottlenecks.Memristors have been proposed as a key part of neuromorphic computing architectures,and can be used to emulate the synaptic plasticities of the human brain.Ferroelectric memristors represent a breakthrough for memristive devices on account of their reliable nonvolatile storage,low write/read latency and tunable conductive states.However,among the reported ferroelectric memristors,the mechanisms of resistive switching are still under debate.In addition,there needs to be more research on emulation of the brain synapses using ferroelectric memristors.Herein,Cu/PbZr_(0.52)Ti_(0.48)O_(3)(PZT)/Pt ferroelectric memristors have been fabricated.The devices are able to realize the transformation from threshold switching behavior to resistive switching behavior.The synaptic plasticities,including excitatory post-synaptic current,paired-pulse facilitation,paired-pulse depression and spike time-dependent plasticity,have been mimicked by the PZT devices.Furthermore,the mechanisms of PZT devices have been investigated by first-principles calculations based on the interface barrier and conductive filament models.This work may contribute to the application of ferroelectric memristors in neuromorphic computing systems.
基金supported by the Ministry of Science and Technology,China(Grant No.2012CB933301)the National Natural Science Foundation of China(Grant Nos.61274065,51173081,61136003,BZ2010043,51372119,and 51172110)the Priority Academic Program Development of Jiangsu Provincial Higher Education Institutions and Synergetic Innovation Center for Organic Electronics and Information Displays,China
文摘The effect of Au nanorods (NRs) on optical-to-electric conversion efficiency is investigated in inverted polymer solar cells, in which Au NRs are sandwiched between two layers of ZnO. Accompanied by the optimization of thickness of ZnO covered on Au NRs, a high-power conversion efficiency of 3.60% and an enhanced short-circuit current density (Jsc) of 10.87 mA/cm2 are achieved in the poly(3-hexylthiophene): [6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC60BM)- based inverted cell and the power conversion efficiency (PCE) is enhanced by 19.6% compared with the control device. The detailed analyses of the light absorption characteristics, the simulated scattering induced by Au NRs, and the electromag- netic field around Au NRs show that the absorption improvement in the photoactive layer due to the light scattering from the longitudinal axis and the near-field increase around Au NRs induced by localized surface plasmon resonance plays a key role in enhancing the performances.
基金Project supported by the State Key Development Program for Basic Research of China (Grant No. 2009CB930600)the National Natural Science Foundation of China (Grant Nos. 60907047,61274065,60977024,21101095,20974046,21003076,51173081,and 61136003)+3 种基金the Specialized Research Foundation for the Doctoral Program of Higher Education,China (Grant No. 20093223120003)the Natural Science Foundation of Institutions of Higher Education of Jiangsu Province,China (Grant Nos. SJ209003,09KJB150009,10KJB510013,and TJ209035)the "Qing Lan" Program of Jiangsu Province,Chinathe Program of Nanjing University of Posts and Telecommunications,China (Grant Nos. NY210015,NY211069,and NY210040)
文摘In this paper we report on a high-contrast top-emitting organic light-emitting device utilizing a moderate-reflection contrast-enhancement stack and a high refractive index anti-reflection layer.The contrast-enhancement stack consists of a thin metal anode layer,a dielectric bilayer,and a thick metal underlayer.The resulting device,with the optimized contrast-enhancement stack thicknesses of Ni(30 nm)/MgF 2(62 nm)/ZnS(16 nm)/Ni(20 nm) and the 25-nm-thick ZnS anti-reflection layer,achieves a luminous reflectance of 4.01% in the visible region and a maximum current efficiency of 0.99 cd/A(at 62.3 mA/cm 2) together with a very stable chromaticity.The contrast ratio reaches 561:1 at an on-state brightness of 1000 cd/m^2 under an ambient illumination of 140 lx.In addition,the anti-reflection layer can also enhance the transmissivity of the cathode and improve light out-coupling by the effective restraint of microcavity effects.
基金Supported by the National Basic Research Program of China under Grant No 2009CB930601the National Natural Science Foundation of China under Grant Nos 50902071,61076067 and 20974046+2 种基金the Natural Science Research Project of Jiangsu Ordinary University(09KJB430008)the Open Research Fund of State Key Laboratory of Bioelectronics,Southeast University(BJ209007)the Opening Project of State Key Laboratory of High Performance Ceramics and Superfine Microstructures(SKL201111SIC).
文摘The gas sensing properties of the single-walled carbon nanotube networked field-effect transistors for NO_(2) are investigated.After the modification of the gold contact electrodes of the carbon nanotube transistors with the thiolated heme,the NO_(2) sensing results indicate that the sensing sensitivity of the modified transistors is enhanced greatly and the sensing limit can reach below 100 ppb.It is also proposed that the mechanism of the sensitivity enhancement for NO_(2) detection mainly results from the modulation of the Schottky energy barrier at the Au/CNTs junction upon thiolated heme facilitated NO_(2) adsorption.
基金Supported by the National Natural Science Foundation of China(Nos 20974046,61077021,61076016)New Century Excellent Talents Funding from Ministry of Education in China(NCET-08-0697)the National Basic Research Program of China(No 2009CB930600).
文摘Stable organic field effect transistors(OFETs)based on copper phthalocyanine(CuPc)are reported using MoO_(3)/Al as source-drain top contacts.By annealing the fabricated device at 130℃ in air,the mobility and the stability of the OFETs can be significantly improved in comparison with the untreated device.The heat-treated devices without encapsulation show a device storage stability of nearly 400 h while the untreated one only 183 h.This improvement is suggested to be mainly attributed to the reduction of the contact barrier between CuPc and the electrode,as well as the better alignment of CuPc molecules via post annealing.
基金This work is supported by the National Natural Science Foundation of China(22075150)the National Key Research and Development Program of China(2019YFE0118100)+2 种基金L.Ding thanks the National Key Research and Development Program of China(2022YFB3803300)the open research fund of Songshan Lake Materials Laboratory(2021SLABFK02)the National Natural Science Foundation of China(21961160720).
文摘Chalcopyrite,copper indium gallium selenide(Cu(In,Ga)Se_(2),CIGS),as semiconductor materials,have been widely used as absorbers in thin-film solar cells,offering high power conversion efficiency(PCE)and good thermal stability[1−3].Recently,the development of non-traditional photovoltaic(PV)devices such as semitransparent.
基金supported by the National Natural Science Foundation of China(Nos.22105099 and 61874053)Natural Science Foundation of Jiangsu Province(No.BK20200700)+2 种基金the China Postdoctoral Science Foundation(No.2022M711591)the open research fund from Anhui Province Key Laboratory of Optoelectronic Materials Science and Technology(No.OMST202101)the State Key Laboratory of Luminescent Materials and Devices(South China University of Technology).
文摘π-Electron coupling of pendant conjugated segment inπ-stacked semiconducting polymers always causes the formation of defect trapped sites and further quenched high-band excitons,which is harmful to the performance and stability of deep-blue polymer light-emitting diodes(PLEDs).Herein,considerate of“defect”carbazole(Cz)electromers in poly(N-vinylcarbazole)(PVK),a series of fluorene units are introduced into pendant segments(PVCz-DMeF,PVCz-FMeNPh and PVCz-DFMeNPh)to suppress the strongπ-electron coupling of pendant Cz units and enhance radiative transition toward fabricating sable PLEDs.Compared to PVCz-FMeNPh and PVCz-DFMeNPh,PVCz-DMeF spin-coated films show a relatively efficient deep-blue emission,completely similar to its single pendant chromophore,confirmed an extremely weak charge-transfer and electron coupling between adjacent pendant segments.Therefore,PLEDs based on PVCz-DMeF present stable and deep-blue emission with a high color purity(0.17,0.08),associated with extremely weak defect emission at 600∼700nm(induced by carbazole electromers).Finally,PLEDs based on PVCz-DMeF/F8BT blended films(1:1)also present the high maximum luminance(Lmax)of 6261 cd/m2 and current efficiency(CE_(max))of 2.03 cd/A,confirmed slightly trapped sites formation.Therefore,precisely control the arrangement and packing model of pendant units inπ-stacked polymer is an essential prerequisite for building efficient and stable emitter for optoelectronic devices.
基金financially supported by“3456”Cultivation Program for Junior Talents of Nanjing Stomatological Hospital,Medical School of Nanjing University(No.0222R212)Natural Science Foundation of Jiangsu Province(No.BK20200710).
文摘Microbubbles(MBs)are gas-filled micrometer-scale spheres that are commonly formed by the gas core encapsulated with stabilizing shells,including polymers,surfactants,proteins,or liposomes shells.Clinically,MBs were originally used as contrast agents for enhanced ultrasound(US)imaging and diagnostics.Nowadays,MBs were given expectations that they can be alternative platforms for drug delivery owing to their unique acoustic properties.MBs can respond to the US by cavitation effect which refers to a series of complex dynamic processes,such as oscillation,expansion,contraction,and implosion[1].Drug molecules or therapeutic agents can be associated with the MB shells by means of van-der-Waals forces,electrostatic or hydrophobic interactions,or merely by physical encapsulation[2].Therefore,strategies are emerging which take advantages of US-mediated MBs drug delivery systems,mainly focusing on sonothrombolysis,cancer therapy and central nervous system(CNS)pathologies[3].Nevertheless,several researchers have apperceived the promising potential of US-responsive MBs in antibacterial therapy.Here,we aimed to paint an overview of the latest published papers on MBs for antibacterial therapy,hoping to help understand the perspectives that the field may offer emerging generations of antibacterial agents.