期刊文献+
共找到119篇文章
< 1 2 6 >
每页显示 20 50 100
Self‑Assembly of Binderless MXene Aerogel for Multiple‑Scenario and Responsive Phase Change Composites with Ultrahigh Thermal Energy Storage Density and Exceptional Electromagnetic Interference Shielding
1
作者 Chuanbiao Zhu Yurong Hao +8 位作者 Hao Wu Mengni Chen Bingqing Quan Shuang Liu Xinpeng Hu Shilong Liu Qinghong Ji Xiang Lu Jinping Qu 《Nano-Micro Letters》 SCIE EI CSCD 2024年第3期367-382,共16页
The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here... The severe dependence of traditional phase change materials(PCMs)on the temperature-response and lattice deficiencies in versatility cannot satisfy demand for using such materials in complex application scenarios.Here,we introduced metal ions to induce the self-assembly of MXene nanosheets and achieve their ordered arrangement by combining suction filtration and rapid freezing.Subsequently,a series of MXene/K^(+)/paraffin wax(PW)phase change composites(PCCs)were obtained via vacuum impregnation in molten PW.The prepared MXene-based PCCs showed versatile applications from macroscale technologies,successfully transforming solar,electric,and magnetic energy into thermal energy stored as latent heat in the PCCs.Moreover,due to the absence of binder in the MXene-based aerogel,MK3@PW exhibits a prime solar-thermal conversion efficiency(98.4%).Notably,MK3@PW can further convert the collected heat energy into electric energy through thermoelectric equipment and realize favorable solar-thermal-electric conversion(producing 206 mV of voltage with light radiation intensity of 200 mw cm^(−2)).An excellent Joule heat performance(reaching 105℃with an input voltage of 2.5 V)and responsive magnetic-thermal conversion behavior(a charging time of 11.8 s can achieve a thermal insulation effect of 285 s)for contactless thermotherapy were also demonstrated by the MK3@PW.Specifically,as a result of the ordered arrangement of MXene nanosheet self-assembly induced by potassium ions,MK3@PW PCC exhibits a higher electromagnetic shielding efficiency value(57.7 dB)than pure MXene aerogel/PW PCC(29.8 dB)with the same MXene mass.This work presents an opportunity for the multi-scene response and practical application of PCMs that satisfy demand of next-generation multifunctional PCCs. 展开更多
关键词 Self-assembly Multiple-scenario Phase change composites Thermal energy storage Electromagnetic interference shielding
下载PDF
Element doping induced microstructural engineering enhancing the lithium storage performance of high-nickel layered cathodes
2
作者 Zhizhan Li Xiao Huang +4 位作者 Jianing Liang Jinlei Qin Rui Wang Jinguo Cheng Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第2期461-468,I0012,共9页
The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation... The high-nickel layered cathodes Li[Ni_(x)Co_(y)Mn_(1-x-y)]O_(2)(x≥0.8)with high specific capacity and long cycle life are considered as prospective cathodes for lithium-ion batteries.However,the microcrack formation and poor structural stability give rise to inferior rate performance and undesirable cycling life.Herein,we propose a dual modification strategy combining primary particle structure design and element doping to modify Li[Ni_(0.95)Co_(0.025)Mn_(0.025)]O_(2) cathode by tungsten and fluorine co-doped(W-F-NCM95).The doping of W can convert the microstructure of primary particles to the unique rod-like shape,which is beneficial to enhance the reversibility of phase transition and alleviate the generation of microcracks.F doping is conducive to alleviating the surface side reactions.Thus,due to the synergistic effect of W,F codoping,the obtained W-F-NCM95 cathodes deliver a high initial capacity of 236.1 mA h g^(-1) at 0.1 C and superior capacity retention of 88.7%over 100 cycles at 0.5 C.Moreover,the capacity still maintains73.8%after 500 cycles at 0.5 C and the texture of primary particle is intact.This work provides an available strategy by W and F co-doping to enhance the electrochemistry performance of high-nickel cathodes for practical application. 展开更多
关键词 High-nickel cathodes Multi-strategy Cation-anion co-doping Particle structure design Synergistic effect
下载PDF
Recent Advances of Electrocatalyst and Cell Design for Hydrogen Peroxide Production
3
作者 Xiao Huang Min Song +3 位作者 Jingjing Zhang Tao Shen Guanyu Luo Deli Wang 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第6期270-303,共34页
Electrochemical synthesis of H_(2)O_(2) via a selective two-electron oxygen reduction reaction has emerged as an attractive alternative to the current energy-consuming anthraquinone process. Herein, the progress on el... Electrochemical synthesis of H_(2)O_(2) via a selective two-electron oxygen reduction reaction has emerged as an attractive alternative to the current energy-consuming anthraquinone process. Herein, the progress on electrocatalysts for H_(2)O_(2) generation, including noble metal, transition metalbased, and carbon-based materials, is summarized. At first, the design strategies employed to obtain electrocatalysts with high electroactivity and high selectivity are highlighted. Then, the critical roles of the geometry of the electrodes and the type of reactor in striking a balance to boost the H_(2)O_(2) selectivity and reaction rate are systematically discussed. After that, a potential strategy to combine the complementary properties of the catalysts and the reactor for optimal selectivity and overall yield is illustrated. Finally, the remaining challenges and promising opportunities for highefficient H_(2)O_(2) electrochemical production are highlighted for future studies. 展开更多
关键词 Electrochemical synthesis H_(2)O_(2) Oxygen reduction reaction ELECTROCATALYST
下载PDF
Tuning Lithiophilicity and Stability of 3D Conductive Scaffold via Covalent Ag-S Bond for High-Performance Lithium Metal Anode
4
作者 Xue Liang Li Shaozhuan Huang +8 位作者 Dong Yan Jian Zhang Daliang Fang Yew Von Lim Ye Wang Tian Chen Li Yifan Li Lu Guo Hui Ying Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2023年第1期234-241,共8页
Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an i... Li metal anode holds great promise to realize high-energy battery systems.However,the safety issue and limited lifetime caused by the uncontrollable growth of Li dendrites hinder its commercial application.Herein,an interlayer-bridged 3D lithiophilic rGO-Ag-S-CNT composite is proposed to guide uniform and stable Li plating/stripping.The 3D lithiophilic rGO-Ag-S-CNT host is fabricated by incorporating Ag-modified reduced graphene oxide(rGO)with S-doped carbon nanotube(CNT),where the rGO and CNT are closely connected via robust Ag-S covalent bond.This strong Ag-S bond could enhance the structural stability and electrical connection between rGO and CNT,significantly improving the electrochemical kinetics and uniformity of current distribution.Moreover,density functional theory calculation indicates that the introduction of Ag-S bond could further boost the binding energy between Ag and Li,which promotes homogeneous Li nucleation and growth.Consequently,the rGO-Ag-S-CNT-based anode achieves a lower overpotential(7.3 mV at 0.5 mA cm^(−2)),higher Coulombic efficiency(98.1%at 0.5 mA cm^(−2)),and superior long cycling performance(over 500 cycles at 2 mA cm−2)as compared with the rGO-Ag-CNT-and rGO-CNT-based anodes.This work provides a universal avenue and guidance to build a robust Li metal host via constructing a strong covalent bond,effectively suppressing the Li dendrites growth to prompt the development of Li metal battery. 展开更多
关键词 Ag-S covalent bond electrochemical performances Li dendrite suppression Li metal anode
下载PDF
Emerging catalytic materials for practical lithium-sulfur batteries 被引量:2
5
作者 Fangyi Shi Lingling Zhai +4 位作者 Qingqing Liu Jingya Yu Shu Ping Lau Bao Yu Xia Zheng-Long Xu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2023年第1期127-145,I0004,共20页
High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation condit... High-energy lithium-sulfur batteries(LSBs)have experienced relentless development over the past decade with discernible improvements in electrochemical performance.However,a scrutinization of the cell operation conditions reveals a huge gap between the demands for practical batteries and those in the literature.Low sulfur loading,a high electrolyte/sulfur(E/S)ratio and excess anodes for lab-scale LSBs significantly offset their high-energy merit.To approach practical LSBs,high loading and lean electrolyte parameters are needed,which involve budding challenges of slow charge transfer,polysulfide precipitation and severe shuttle effects.To track these obstacles,the exploration of electrocatalysts to immobilize polysulfides and accelerate Li-S redox kinetics has been widely reported.Herein,this review aims to survey state-of-the-art catalytic materials for practical LSBs with emphasis on elucidating the correlation among catalyst design strategies,material structures and electrochemical performance.We also statistically evaluate the state-of-the-art catalyst-modified LSBs to identify the remaining discrepancy between the current advancements and the real-world requirements.In closing,we put forward our proposal for a catalytic material study to help realize practical LSBs. 展开更多
关键词 Lithium-sulfur battery Catalytic materials High sulfur loading Lean electrolyte
下载PDF
PEO coating on Mg-Ag alloy:The incorporation and release of Ag species
6
作者 Xinxin Zhang Yupeng Zhang +5 位作者 You Lv Zehua Dong Lei Yang Erlin Zhang Teruo Hashimoto Xiaorong Zhou 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第6期2182-2195,共14页
In the present study,the distribution of Ag in the coating formed on Mg-Ag alloy by plasma electrolytic oxidation(PEO)and its ionic release kinetics when exposed to a 0.9 wt.%Na Cl solution at 37℃have been investigat... In the present study,the distribution of Ag in the coating formed on Mg-Ag alloy by plasma electrolytic oxidation(PEO)and its ionic release kinetics when exposed to a 0.9 wt.%Na Cl solution at 37℃have been investigated.Both metallic Ag and Ag oxide particles with~5 to~40 nm in diameters were observed in the PEO coating.Further,an Ag-enriched layer of~20 nm in thickness at the substrate/coating interface was also observed.The PEO coating on the Mg-Ag alloy not only increases its corrosion resistance with the corrosion current density decreasing by up to 3 orders of magnitude from 8.04×10^(-3)to 4.03×10^(-6)A/cm^(2),but also controls the release of Ag+to the level that is sufficient for anti-infective efficacy without causing cytotoxicity to mammal cells. 展开更多
关键词 Mg-Ag alloy Plasma electrolytic oxidation Ag distribution Ag release Corrosion resistance
下载PDF
Visible light triggered exfoliation of COF micro/nanomotors for efficient photocatalysis
7
作者 Kai Feng Liang Zhang +2 位作者 Jiang Gong Jinping Qu Ran Niu 《Green Energy & Environment》 SCIE EI CSCD 2023年第2期567-578,共12页
We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely C... We report a new facile light-induced strategy to disperse micron-sized aggregated bulk covalent organic frameworks(COFs)into isolated COFs nanoparticles.This was achieved by a series of metal-coordinated COFs,namely COF-909-Cu,-Co or-Fe,where for the first time the diffusio-phoretic propulsion was utilized to design COF-based micro/nanomotors.The mechanism studies revealed that the metal ions decorated in the COF-909 backbone could promote the separation of electron and holes and trigger the production of sufficient ionic and reactive oxygen species under visible light irradiation.In this way,strong light-induced self-diffusiophoretic effect is achieved,resulting in good dispersion of COFs.Among them,COF-909-Fe showed the highest dispersion performance,along with a drastic decrease in particle size from 5μm to500 nm,within only 30 min light irradiation,which is inaccessible by using traditional magnetic stirring or ultrasonication methods.More importantly,benefiting from the outstanding dispersion efficiency,COF-909-Fe micro/nanomotors were demonstrated to be efficient in photocatalytic degradation of tetracycline,about 8 times faster than using traditional magnetic stirring method.This work opens up a new avenue to prepare isolated nanosized COFs in a high-fast,simple,and green manner. 展开更多
关键词 Micro/nanomotor COFs EXFOLIATION NANOCATALYST PHOTOCATALYSIS
下载PDF
Effect of air-formed film on corrosion behavior of magnesium-lithium alloys
8
作者 Yanlong Ma Lei Liu +4 位作者 Xinxin Zhang Fei Guo Xiaorong Zhou Mingbo Yang Jingfeng Wang 《Journal of Magnesium and Alloys》 SCIE EI CAS CSCD 2023年第11期4325-4337,共13页
It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li ... It is recently suggested that air-formed film plays an important role in controlling corrosion resistance of Mg-Li alloys. However, the structure of the air-formed film and its effect on corrosion resistance of Mg-Li alloys has not been fully understood. Firstly, the air-formed films formed on α and β phases in a dual-phase LZ91 Mg-Li alloy after exposure to laboratory air for up to 48 h have been examined by SEM under the assistance of ultramicrotomy. Then, the effect of the air-formed film on surface potential and, consequently, corrosion/oxidation behavior of the alloy has been investigated. Finally, in order to exclude the influence from α phase, the structure of the air-formed film on β phase and its effect on corrosion/oxidation behavior of Mg-Li alloys have been studied based on a single-phase LA141 Mg-Li alloy. The results show that the air-formed film is thin and negligible on α phase but thick on β phase after prolonged exposure to laboratory air. The thick air-formed film on β phase has a multilayer structure with an inner layer consisting of Mg O/Mg(OH)_(2) and outer layer consisting of Li_(2)CO_(3), which greatly elevates the surface potential of β phase in air. Both LZ91 and LA141 Mg-Li alloys firstly undergo uniform corrosion and then filiform corrosion when immersed in Na Cl solution and the pre-existed air-formed film on β-Li phase can retard the occurrence of filiform corrosion in the alloys. 展开更多
关键词 Magnesium-lithium alloy Air-formed film Uniform corrosion Filiform corrosion
下载PDF
Molecular engineering binuclear copper catalysts for selective CO_(2) reduction to C_(2) products
9
作者 Qi Zhao Kai Lei +2 位作者 Bao Yu Xia Rachel Crespo-Otero Devis Di Tommaso 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第6期166-173,I0005,共9页
Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding th... Molecular copper catalysts serve as exemplary models for correlating the structure-reaction-mechanism relationship in the electrochemical CO_(2) reduction(eCO_(2)R),owing to their adaptable environments surrounding the copper metal centres.This investigation,employing density functional theory calculations,focuses on a novel family of binuclear Cu molecular catalysts.The modulation of their coordination configuration through the introduction of organic groups aims to assess their efficacy in converting CO_(2) to C_(2)products.Our findings highlight the crucial role of chemical valence state in shaping the characteristics of binuclear Cu catalysts,consequently influencing the eCO_(2)R behaviour,Notably,the Cu(Ⅱ)Cu(Ⅱ)macrocycle catalyst exhibits enhanced suppression of the hydrogen evolution reaction(HER),facilitating proton trans fer and the eCO_(2)R process.Fu rthermore,we explo re the impact of diverse electro n-withdrawing and electron-donating groups coordinated to the macrocycle(R=-F,-H,and-OCH_3)on the electron distribution in the molecular catalysts.Strategic placement of-OCH_3 groups in the macrocycles leads to a favourable oxidation state of the Cu centres and subsequent C-C coupling to form C_(2) products.This research provides fundamental insights into the design and optimization of binuclear Cu molecular catalysts for the electrochemical conversion of CO_(2) to value-added C_(2) products. 展开更多
关键词 Molecular catalyst design Selective CO_(2)reduction C_(2)products Density functional theory calculations
下载PDF
Hybrid water electrolysis:Replacing oxygen evolution reaction for energy-efficient hydrogen production and beyond 被引量:2
10
作者 Lijie Du Yujie Sun Bo You 《Materials Reports(Energy)》 2021年第1期141-154,共14页
Renewable energy-driven hydrogen generation from water electrolysis has been widely recognized as a promising approach to utilize sustainable energy resources,reduce our dependence on legacy fossil fuels and alleviate... Renewable energy-driven hydrogen generation from water electrolysis has been widely recognized as a promising approach to utilize sustainable energy resources,reduce our dependence on legacy fossil fuels and alleviate net carbon dioxide emissions.However,conventional water electrolyzers suffer from the high overpotentials,mainly due to the sluggish kinetics of anodic oxygen evolution reaction(OER).This reaction also generates reactive oxygen species that could degrade the proton exchange membrane and oxygen that may mix with the cathodic hydrogen to form explosive gaseous mixtures.To address these issues,an innovative hybrid water electrolysis strategy which involves a certain alternative oxidation reaction to replace OER has been developed,and has led to a burgeoning area that sparks much research interest in finding available alternative reactions and their corresponding electrocatalysts.Herein,we summarize the alternative reactions into three groups:(1)the reagentsacrificing type that can generate H2 with an ultra-low potential while the substrates are oxidized to valueless products;(2)the pollutant-degrading type at which environmental pollutants are used as substrates;(3)the valueadded type that produces valuable products at the anode.Catalyst and electrolyzer designs for hybrid electrolysis are also briefly discussed,with an emphasis on the catalyst reconstruction phenomenon.Finally,the present challenges and perspectives are put forward. 展开更多
关键词 Hybrid water splitting ELECTROCATALYSIS Hydrogen evolution Organic oxidation
下载PDF
Manipulating fast Li_(2)S redox via carbon confinement and oxygen defect engineering of In_(2)O_(3)for lithium-sulfur batteries
11
作者 Jinlei Qin Rui Wang +2 位作者 Zilong Yuan Pei Xiao Deli Wang 《Nano Research》 SCIE EI CSCD 2024年第6期5179-5187,共9页
Lithium-sulfur(Li-S)batteries have been considered as promising energy storage systems due to the merits of high energy density and low cost.However,the lithium polysulfides(LiPSs)diffusion and sluggish redox kinetics... Lithium-sulfur(Li-S)batteries have been considered as promising energy storage systems due to the merits of high energy density and low cost.However,the lithium polysulfides(LiPSs)diffusion and sluggish redox kinetics hamper the battery performance.In this work,low-bandgap indium oxide(In_(2)O_(3))with dense oxygen vacancies(In_(2)O_(3−x),0<x<3)confined in nitrogen-doped carbon column(NC)is developed as a desirable LiPSs immobilizer and promoter to address these intractable problems.The NC confined In_(2)O_(3−x)with rich O vacancies(In_(2)O_(3−x)@NC)lowers the bandgap of 1.78 eV,strengthens the chemical adsorbability to LiPSs,and catalyzes the bidirectional Li_(2)S redox.Attributed to the structural and chemical cooperativities,the obtained sulfur electrodes exhibit a stable cycling over 550 cycles at 1.0 C and splendid rate capability up to 4.0 C.More significantly,when the sulfur-loading reaches as high as 5.5 mg·cm^(−2),the cathodes achieve an areal capacity of 5.12 mAh·cm^(−2)at 0.1 C.The strategy of NC confined catalyst with rich defects engineering demonstrates great promise in the development of practical Li-S batteries. 展开更多
关键词 Li-S batteries nitrogen-doped carbon confinement oxygen vacancies bidirectional Li_(2)S redox
原文传递
Well-ordered layered LiNi0.8Co0.1Mn0.1O2 submicron sphere with fast electrochemical kinetics for cathodic lithium storage 被引量:8
12
作者 Jianing Liang Yun Lu +5 位作者 Jie Wang Xupo Liu Ke Chen Weihao Ji Ye Zhu Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期188-195,I0007,共9页
Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects f... Nickel-rich layered oxides have drawn sustainable attentions for lithium ion batteries owing to their higher theoretical capacities and lower cost.However,nickel-rich layered oxides also have exposed several defects for commercial application,such as uncontrollable ordered layered structure,which leads to higher energy barrier for Li+diffusion.In addition,suffering from structural mutability,the bulk nickelrich cathode materials likely trigger overall volumetric variation and intergranular cracks,thus obstructing the lithium ion diffusion path and shortening the service life of the whole device.Herein,we report wellordered layered Li Ni0.8Co0.1Mn0.1O2 submicron spheroidal particles via an optimized co-precipitation and investigated as LIBs cathodes for high-performance lithium storage.The as-fabricated Li Ni0.8Co0.1Mn0.1O2 delivers high initial capacity of 228 mAh g–1,remarkable energy density of 866 Wh kg–1,rapid Li ion diffusion coefficient(10–9cm2s–1)and low voltage decay.The remarkable electrochemical performance should be ascribed to the well-ordered layered structure and uniform submicron spheroidal particles,which enhance the structural stability and ameliorate strain relaxation via reducing the parcel size and shortening Li-ion diffusion distance.This work anticipatorily provides an inspiration to better design particle morphology for structural stability and rate capability in electrochemistry energy storage devices. 展开更多
关键词 Lithium ion batteries Nickel-rich cathode Well-ordered layered structure Submicron spheroidal particles Electrochemical kinetics
下载PDF
Recent Advances on MOF Derivatives for Non-Noble Metal Oxygen Electrocatalysts in Zinc-Air Batteries 被引量:6
13
作者 Yuting Zhu Kaihang Yue +5 位作者 Chenfeng Xia Shahid Zaman Huan Yang Xianying Wang Ya Yan Bao Yu Xia 《Nano-Micro Letters》 SCIE EI CAS CSCD 2021年第9期164-192,共29页
Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic framewo... Oxygen electrocatalysts are of great importance for the air electrode in zinc-air batteries(ZABs).Owing to the high specific surface area,controllable pore size and unsaturated metal active sites,metal-organic frameworks(MOFs)derivatives have been widely studied as oxygen electrocatalysts in ZABs.To date,many strategies have been developed to generate efficient oxygen electrocatalysts from MOFs for improving the performance of ZABs.In this review,the latest progress of the MOF-derived non-noble metal-oxygen electrocatalysts in ZABs is reviewed.The performance of these MOF-derived catalysts toward oxygen reduction,and oxygen evolution reactions is discussed based on the categories of metal-free carbon materials,single-atom catalysts,metal cluster/carbon composites and metal compound/carbon composites.Moreover,we provide a comprehensive overview on the design strategies of various MOF-derived non-noble metal-oxygen electrocatalysts and their structure-performance relationship.Finally,the challenges and perspectives are provided for further advancing the MOF-derived oxygen electrocatalysts in ZABs. 展开更多
关键词 Metal-organic framework Non-noble metal Oxygen electrocatalysts Air electrode Zinc-air batteries
下载PDF
Rational Design of High-Performance Bilayer Solar Evaporator by Using Waste Polyester-Derived Porous Carbon-Coated Wood 被引量:3
14
作者 Ning Liu Liang Hao +3 位作者 Boyi Zhang Ran Niu Jiang Gong Tao Tang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期617-626,共10页
Wood-based bilayer solar evaporators,which possess cooperative advantages of natural wood and photothermal conversion coating including fast water transportation,low heat conduction,renewability,and high light absorba... Wood-based bilayer solar evaporators,which possess cooperative advantages of natural wood and photothermal conversion coating including fast water transportation,low heat conduction,renewability,and high light absorbability,hold great promise for water purification.However,previous studies suffer from low evaporation rates and high cost of coatings,and lack a deep understanding how the porous structures of coating layer function.Herein,a novel bilayer solar evaporator is designed through facile surface coating of wood by low-cost porous carbon from controlled carbonization of polyester waste.The porous carbon bears rich oxygen-containing groups,well-controlled micro-/meso-/macropores,and high surface areas(1164 m^(2) g^(−1)).It is proved that porous carbon improves sunlight absorption and promotes the formation of numerous water clusters to reduce water evaporation enthalpy.Owing to these combined features,the bilayer solar evaporator exhibits high evaporation rate(2.38 kg m^(−2) h^(−1)),excellent longterm stability,and good salt resistance.More importantly,a large-scale solar desalination device for outdoor experiments is developed to produce freshwater from seawater.The daily freshwater production amount(3.65 kg m^(−2))per unit area meets the daily water consumption requirement of one adult.These findings will inspire new paradigms toward developing efficient solar steaming technologies for desalination to address global freshwater shortage. 展开更多
关键词 solar steam generation waste polyester hierarchically porous carbon DESALINATION freshwater production
下载PDF
Glucose-derived carbon sphere supported CoP as efficient and stable electrocatalysts for hydrogen evolution reaction 被引量:1
15
作者 Bangde Luo Ting Huang +1 位作者 Ye Zhu Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2017年第6期1147-1152,共6页
Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ pres... Glucose-derived carbon sphere supported cobalt phosphide nanoparticles(Co P/C) were synthesized via a concise two-step method. The electrochemical measurement results indicate that the Co P/C prepared at 900 ℃ presents excellent electrocatalytic performance for hydrogen evolution reaction(HER). The overpotential at a current density of 10 m A cmis 108 and 163 mV in 0.5 M HSOand 1 M KOH, respectively, and maintains its electrocatalytic durability for at least 10 h. This work supplies a new field to challenge the construction of electrocatalysts for HER through using cost-effective carbon supported transition metal phosphides. 展开更多
关键词 COP Hydrogen evolution reaction Non-noble electrocatalysts Carbon sphere
下载PDF
Concentrated dual-salt electrolytes for improving the cycling stability of lithium metal anodes 被引量:2
16
作者 刘品 马强 +6 位作者 方铮 马洁 胡勇胜 周志彬 李泓 黄学杰 陈立泉 《Chinese Physics B》 SCIE EI CAS CSCD 2016年第7期97-102,共6页
Lithium(Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity(3860 mAh/g), low density(0.534 g/cm3), and low negative electrochemical potential(-3.040... Lithium(Li) metal is an ideal anode material for rechargeable Li batteries, due to its high theoretical specific capacity(3860 mAh/g), low density(0.534 g/cm3), and low negative electrochemical potential(-3.040 V vs. standard hydrogen electrode). In this work, the concentrated electrolytes with dual salts, composed of Li[N(SO2F)2](Li FSI) and Li[N(SO2CF3)2](Li TFSI) were studied. In this dual-salt system, the capacity retention can even be maintained at 95.7%after 100 cycles in Li|Li FePO4 cells. A Li|Li cell can be cycled at 0.5 mA/cm2 for more than 600 h, and a Li|Cu cell can be cycled at 0.5 m A/cm2 for more than 200 cycles with a high average Coulombi efficiency of 99%. These results show that the concentrated dual-salt electrolytes exhibit superior electrochemical performance and would be a promising candidate for application in rechargeable Li batteries. 展开更多
关键词 lithium metal rechargeable batteries dual-salt electrolyte concentrated electrolytes
下载PDF
Facet Engineering of Advanced Electrocatalysts Toward Hydrogen/Oxygen Evolution Reactions 被引量:3
17
作者 Changshui Wang Qian Zhang +7 位作者 Bing Yan Bo You Jiaojiao Zheng Li Feng Chunmei Zhang Shaohua Jiang Wei Chen Shuijian He 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第4期97-137,共41页
The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality... The electrocatalytic water splitting technology can generate highpurity hydrogen without emitting carbon dioxide,which is in favor of relieving environmental pollution and energy crisis and achieving carbon neutrality.Electrocatalysts can effectively reduce the reaction energy barrier and increase the reaction efficiency.Facet engineering is considered as a promising strategy in controlling the ratio of desired crystal planes on the surface.Owing to the anisotropy,crystal planes with different orientations usually feature facet-dependent physical and chemical properties,leading to differences in the adsorption energies of oxygen or hydrogen intermediates,and thus exhibit varied electrocatalytic activity toward hydrogen evolution reaction(HER)and oxygen evolution reaction(OER).In this review,a brief introduction of the basic concepts,fundamental understanding of the reaction mechanisms as well as key evaluating parameters for both HER and OER are provided.The formation mechanisms of the crystal facets are comprehensively overviewed aiming to give scientific theory guides to realize dominant crystal planes.Subsequently,three strategies of selective capping agent,selective etching agent,and coordination modulation to tune crystal planes are comprehensively summarized.Then,we present an overview of significant contributions of facet-engineered catalysts toward HER,OER,and overall water splitting.In particular,we highlight that density functional theory calculations play an indispensable role in unveiling the structure–activity correlation between the crystal plane and catalytic activity.Finally,the remaining challenges in facet-engineered catalysts for HER and OER are provided and future prospects for designing advanced facet-engineered electrocatalysts are discussed. 展开更多
关键词 Crystal facet engineering ANISOTROPY Oxygen evolution reaction Hydrogen evolution reaction Theoretical simulations
下载PDF
Insight into the hydrogen oxidation electrocatalytic performance enhancement on Ni via oxophilic regulation of MoO_(2)
18
作者 Shaofeng Deng Xupo Liu +7 位作者 Xuyun Guo Tonghui Zhao Yun Lu Jingyu Cheng Ke Chen Tao Shen Ye Zhu Deli Wang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第3期202-207,共6页
Exploring platinum-group-metal(PGM)free electrocatalysts for hydrogen oxidation reaction(HOR)in alkaline media is essential to the progress of anion exchange membrane fuel cells(AEMFCs).In this work,a Ni/MoO_(2) heter... Exploring platinum-group-metal(PGM)free electrocatalysts for hydrogen oxidation reaction(HOR)in alkaline media is essential to the progress of anion exchange membrane fuel cells(AEMFCs).In this work,a Ni/MoO_(2) heterostructure catalyst with comparable HOR activity in alkaline electrolyte with PGM catalyst was prepared by a simple hydrothermal-reduction method.Remarkably,the Ni/MoO_(2) presents a mass kinetic current density of 38.5 mA mgNi^(-1) at the overpotential of 50 mV,which is higher than that of the best PGM free HOR catalyst reported by far.Moreover,the HOR performance of Ni/MoO_(2) under 100 ppm CO shows negligible fading,together with the superior durability,render it significant potential for application in AEMFCs.A particular mechanistic study indicates that the excellent HOR performance is ascribed to the accelerated Volmer step by the incorporation of MoO_(2).The function of MoO_(2) was further confirmed by CO striping experiment on Pt/C-MoO_(2) that MoO_(2) can facilitated OH adsorption thus accelerate the HOR process.On account of the high performance and low cost,the Ni/MoO_(2) electrocatalyst encourages the establishment of high performance PGM free catalyst and shows significant potential for application in AEMFCs. 展开更多
关键词 HOR Oxophilic CO tolerance MoO_(2)
下载PDF
Unveiling the Underlying Mechanism of Transition Metal Atoms Anchored Square Tetracyanoquinodimethane Monolayers as Electrocatalysts for N_(2) Fixation
19
作者 Shengyao Lv Chunxiang Huang +1 位作者 Guoliang Li Liming Yang 《Energy & Environmental Materials》 SCIE EI CAS CSCD 2022年第2期533-542,共10页
We for the first time systematically studied the structures and electrochemical nitrogen reduction reaction properties of two-dimensional single transition-metal anchored square tetracyanoquinodimethane monolayers(lab... We for the first time systematically studied the structures and electrochemical nitrogen reduction reaction properties of two-dimensional single transition-metal anchored square tetracyanoquinodimethane monolayers(labeled as:TM-sTCNQ,TM=3d,4d,5d series transition metals)by employing density functional theory method.Through highthroughput screenings and full reaction path researches,two promising electrochemical nitrogen reduction reaction catalysts Nb-sTCNQ and MosTCNQ have been obtained.The nitrogen reduction reaction onset potential on Nb-sTCNQ is as low as−0.48 V.Furthermore,the Nb-sTCNQ catalyst can quickly desorb NH3 produced with a free energy of 0.65 eV,giving Nb-sTCNQ excellent catalytic cycle performance.The high catalytic activity of the two materials might be attributed to the effective charge transfer between the active center and adsorbed N_(2),which enables the active center to adsorb and activate inert N_(2) molecules well,and the reduction processes require small energy input(i.e.,the maximum free energy changes are small).This work provides insights for finding highly efficient,stable,and low-cost nitrogen reduction reaction electrocatalysts.We hope our results can promote further experimental and theoretical research of this field. 展开更多
关键词 2D TM-sTCNQ monolayers density functional theory method electrochemical nitrogen reduction reaction high-throughput screening single-atom catalysts
下载PDF
Two-Dimensional Organometallic TM3–C12S12 Monolayers for Electrocatalytic Reduction of CO2
20
作者 Jin-Hang Liu Li-Ming Yang Eric Ganz 《Energy & Environmental Materials》 2019年第3期193-200,共8页
Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investig... Organometallic nanosheets are a versatile platform for design of efficient electrocatalyst materials due to their high surface area and uniform dispersion of metal active sites.In this paper,we systematically investigate the electrocatalytic performance of the first transition metal series TM3–C12S12 monolayers on CO2 using spin-polarized density functional theory.The calculations show that M3–C12S12 exhibits excellent catalytic activity and selectivity in the catalytic reduction in CO2.The main reduction products of Sc,Ti,and Cr are CH4.V,Mn,Fe and Zn mainly produce HCOOH,and Co produces HCHO,while CO is the main product for Ni and Cu.For Sc,Ti,and Cr,the overpotentials are>0.7 V,while for V,Mn,Fe,Co,Ni,Cu,Zn,the overpotentials are very low and range from 0.27 to 0.47 V.Therefore,our results indicate that many of the M3–C12S12 monolayers are expected to be excellent and efficient CO2 reduction catalysts. 展开更多
关键词 density functional theory electrocatalytic reduction of CO2 organometallic TM3-C12S12 Monolayers single atom catalyst two-dimensional materials
下载PDF
上一页 1 2 6 下一页 到第
使用帮助 返回顶部