In this paper, we show one of the possibility utilizing typical origami structures for civil engineering fields such as the bridge bearing support. We numerically investigate axial spring constants and buckling behavi...In this paper, we show one of the possibility utilizing typical origami structures for civil engineering fields such as the bridge bearing support. We numerically investigate axial spring constants and buckling behaviors of bellows-like origami tube structures. The bellows-like origami tube structures, which can be folded because of elastic deformations, work as a kind of spring. If the initial heights of the bellows-like origami tubes are less than 90% of the height of the prismatic tubes without bellows-like folded lines, the spring constants of the bellows-like tubes are very low compared with those of the prismatic tubes. The buckling loads and patterns of the bellows-like tubes vary depending on the initial heights of the tubes.展开更多
文摘In this paper, we show one of the possibility utilizing typical origami structures for civil engineering fields such as the bridge bearing support. We numerically investigate axial spring constants and buckling behaviors of bellows-like origami tube structures. The bellows-like origami tube structures, which can be folded because of elastic deformations, work as a kind of spring. If the initial heights of the bellows-like origami tubes are less than 90% of the height of the prismatic tubes without bellows-like folded lines, the spring constants of the bellows-like tubes are very low compared with those of the prismatic tubes. The buckling loads and patterns of the bellows-like tubes vary depending on the initial heights of the tubes.