The feasibility of using metal optics or negative ε materials, with the aim of reducing the transversal extent of waveguided photonic fields to values much less than the vacuum wavelength, in order to achieve signifi...The feasibility of using metal optics or negative ε materials, with the aim of reducing the transversal extent of waveguided photonic fields to values much less than the vacuum wavelength, in order to achieve significantly higher densities of integration in integrated photonics circuits that is possible today is discussed. Relevant figures of merit are formulated to this end and used to achieve good performance of devices with today's materials and to define required improvements in materials characteristics in terms of decreased scattering rates in the Drude model. The general conclusion is that some metal based circuits are feasible with today's matals. Frequency selective metal devices will have Q values on the order of only 10-100, and significant improvements of scattering rates or lowering of the imaginary part of e have to be achieved to implement narrowband devices. A photonic "Moore's law" of integration densities is proposed and exemplified.展开更多
We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fab...We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.展开更多
A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which h...A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.展开更多
Janus WSSe monolayer is a novel two-dimensional(2D)material that breaks the out-of-plane mirror symmetry and has a large built-in electric field.These features lead to sizable Rashba spin-orbit coupling and enhanced n...Janus WSSe monolayer is a novel two-dimensional(2D)material that breaks the out-of-plane mirror symmetry and has a large built-in electric field.These features lead to sizable Rashba spin-orbit coupling and enhanced nonlinear optical properties,making it a promising material platform for various spintronic and optoelectronic device applications.In recent years,nonlinear photocurrent responses such as shift and injection currents were found to be closely related to the quantum geometry and Berry curvature of materials,indicating that these responses can serve as powerful tools for probing the novel quantum properties of materials.In this work,we investigate the second-order nonlinear photocurrent responses in a Janus WSSe monolayer theoretically based on first-principles calculations and the Wannier interpolation method.It is demonstrated that the Janus WSSe monolayer exhibits significant out-of-plane nonlinear photocurrent coefficients,which is distinct from the nonJanus structures.Our results also suggest that the second-order nonlinear photocurrent response in the Janus WSSe monolayer can be effectively tuned by biaxial strain or an external electric field.Thus,the Janus WSSe monolayer offers a unique opportunity for both exploring nonlinear optical phenomena and realizing flexible 2D optoelectronic nanodevices.展开更多
Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are ch...Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance-voltage (C-V) and current-voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 ℃ can lead to Ge incorporation in HfO2 and the partial crystallization of HfO2, which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO2/Ge MOS capacitors. However, wet thermal annealing at 400 ℃ can decrease the GeOx interlayer thickness at the HfO2/Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeOx in the wet ambient. The pre-growth of a thin GeO2 passivation layer can effectively suppress the interface states and improve the C V characteristics for the as-prepared HfO2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent.展开更多
A laser-diode-pumped 1.54-μm passive Q-switched erbium doped glass laser was reported. We utilize a laser diode with wavelength of 973nm to pump a 1-mm Er/Yb co-doped phosphate glass with the erbium and ytterbium con...A laser-diode-pumped 1.54-μm passive Q-switched erbium doped glass laser was reported. We utilize a laser diode with wavelength of 973nm to pump a 1-mm Er/Yb co-doped phosphate glass with the erbium and ytterbium concentrations of 1 wt.% and 21 wt.%, respectively. A Co^2+ :MgAl2O4 slab crystal was used as a passive Q- switcher. Q-switched pulses with repetition frequency of 800Hz, width of 7.4ns, peak power of 2.2kW and average power of 13.3 m W were obtained when absorbed pump power was 4 75 m W. A sandwich structure of the Q- switched microchip Er/Yb glass laser was demonstrated, which shows shorter pulse width of 6.8 ns. Dependences of pulse duration and repetition frequency on pump power were also investigated.展开更多
Using fully incoherent white light emitted from an incandescent bulb (a line source) and amplitude mask, we study experimentally the interaction between two 21) white-light photovoltaic dark spatial solitons with t...Using fully incoherent white light emitted from an incandescent bulb (a line source) and amplitude mask, we study experimentally the interaction between two 21) white-light photovoltaic dark spatial solitons with three different separations (40μm, 50μm and 60μm) and arrangement directions (parallel to, perpendicular to and tilted at 45° with respect to the crystalline c axis) propagating in parallel in close proximity in seff-defocusing LiNbO3:Fe crystal. Experimental results reveal that a 21) white-light dark soliton pair only experiences attractive forces when their mutual separation is sufflciently small (〈 60 μm), and the degree of the attraction depends on their mutual separation and their arrangement direction. When the separation is larger than 60 μm, the interaction is not evident.展开更多
We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities i...We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.展开更多
In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Consi...In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.展开更多
We use the label-free microsphere-assisted microscopy to image low-contrast hexagonally close-packed polystyrene nanoparticle arrays with diameters of 300 and 250 nm.When a nanoparticle array is directly placed on a g...We use the label-free microsphere-assisted microscopy to image low-contrast hexagonally close-packed polystyrene nanoparticle arrays with diameters of 300 and 250 nm.When a nanoparticle array is directly placed on a glass slide,it cannot be distinguished.If a 30-nm-thick Ag film is deposited on the surface of a nanoparticle array,the nanoparticle array with nanoparticle diameters of 300 and 250 nm can be distinguished.In addition,the Talbot effect of the 300-nm-diameter nanoparticle array is also observed.If a nanoparticle sample is assembled on a glass slide deposited with a 30-nm-thick Ag film,an array of 300-nm-diameter nanoparticles can be discerned.We propose that in microsphere-assisted microscopy imaging,the resolution can be improved by the excitation of surface plasmon polaritons(SPPs) on the sample surface or at the sample/substrate interface,and a higher near-field intensity due to the excited SPPs would benefit the resolution improvement.Our study of label-free super-resolution imaging of low-contrast objects will promote the applications of microsphere-assisted microscopy in life sciences.展开更多
Based on the diffusion approximate theory (DA), a theoretical model about the distribution of the intensity of a narrow collimation beam illuminating on a semi-lnfinite biological tissue is developed. In order to ve...Based on the diffusion approximate theory (DA), a theoretical model about the distribution of the intensity of a narrow collimation beam illuminating on a semi-lnfinite biological tissue is developed. In order to verify the correctness of the model, a novel method of measuring the distributions of the intensity of light in Intralipid-10% suspension at 650 nm is presented and ts of the distributions of the distance-dependent intensity of scattering light in different directions are made. The investigations show that the results from our diffusion model are in good agreement with the experimental results beyond and in the areas around the light source, and the distance-dependent intensity in the incident direction attenuates approximately in the exponential form. Furthermore, our theoretic results indicate the anisotropic characteristics of the intensity in different directions of scattering light inside the biological tissue.展开更多
The spectra of fiber Bragg grating (FBG) in inhomogeneous strain fields are distorted due to its inhomogeneity of both the periods and the effective refractive index. The couple mode theory and the Runge-Kutta method ...The spectra of fiber Bragg grating (FBG) in inhomogeneous strain fields are distorted due to its inhomogeneity of both the periods and the effective refractive index. The couple mode theory and the Runge-Kutta method can be employed for exact simulation of the spectrum of Bragg grating in such field, but the convergence speed is slow. On the other hand, although the transfer matrix method could be used with higher convergence speed, the precision is poor because of the neglect of the grads of strain change. By improving the FBG equivalent period, a novel simulation method based on a modified transfer matrix method is proposed, which has the advantage of quick-convergence as well as good accuracy.展开更多
We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal a...We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.展开更多
The typical laser characteristics of a laser diode pumped,solid-state laser with a Z-type resonator structure are analyzed by the transform circle approach.Laser waists change with the thennal focus length of the lasi...The typical laser characteristics of a laser diode pumped,solid-state laser with a Z-type resonator structure are analyzed by the transform circle approach.Laser waists change with the thennal focus length of the lasing medium so that the output power becomes unstable.In particular,there is a very unstable operation region when the pump power is of medium magnitude.A method is put forward to avoid this situation.展开更多
A symmetrical π-shaped metamaterial is investigated. Numerical simulations exhibit the negative-refractive property of this structure. The complex refractive index n, wave impedance z, effective permittivity ε and e...A symmetrical π-shaped metamaterial is investigated. Numerical simulations exhibit the negative-refractive property of this structure. The complex refractive index n, wave impedance z, effective permittivity ε and effective permeability μ have been retrieved from the simulated S parameters. The negative-refractive band lies between 11.2 GHz and 13.05 GHz. The frequency band with high transmission with low loss occurs between 11.95 GHz and 12.5 GHz, which is helpful for practical applications. The mechanism of the electromagnetic resonance is also revealed.展开更多
The emission at 1530nm and its applications in optical communications are discussed. The efficient width of the emission band △eff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass a...The emission at 1530nm and its applications in optical communications are discussed. The efficient width of the emission band △eff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaFa-AIF3-NaF (ZBLAN) glass doped by Er^3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 153Onto increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.展开更多
Second harmonic generation (SHG) of a new organic optical crystal-urea L-malic acid (ULMA) was studied. A comparison of SHG efficiency of ULMA and KDP at a fundamental wavelength of 1064 nm using the Kurtz powder ...Second harmonic generation (SHG) of a new organic optical crystal-urea L-malic acid (ULMA) was studied. A comparison of SHG efficiency of ULMA and KDP at a fundamental wavelength of 1064 nm using the Kurtz powder method demonstrated that the second order nonlinear coefficient of ULMA is 1 57 times of that of KDP,and the damage threshold of ULMA is relatively higher Finally,both Type Ⅰ and Type Ⅱ phase match angles of the biaxial crystal ULMA were calculated.展开更多
We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it i...We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.展开更多
Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra ...Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra and the auger spectra, the valence states of chromium ion and copper ion were+3 and+1 after radiation respectively, which still had the reducibility to release electrons. In contrast with the near-infrared(NIR)1 064 nm and mid-infrared(MIR) 10 600 nm laser at the same average output power of 15 W, the reduced metal percentage in the Cu-Cr complex was obviously distinguished at the depth from nanometer to micron. After chemical plating, the average coating thickness and mean-square deviation of the NIR sample were 11.61 μm and 0.30 for copper layer, and 2.69 μm and 0.08 for nickel layer. The results were much better than those of the MIR sample.展开更多
Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteri...Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteristic and an apparent Schottky barrier of 0.49 eV while the WN0.38/n-Ge Schottky contact exhibits quasi-Ohmic current–voltage characteristics. Dipoles formed at the contact interface by the difference of the Pauling electronegativities of Ge and N are confirmed to alleviate the Fermi-level pinning effect.展开更多
基金Project supported by the Swedish Foundation for Strategic Research
文摘The feasibility of using metal optics or negative ε materials, with the aim of reducing the transversal extent of waveguided photonic fields to values much less than the vacuum wavelength, in order to achieve significantly higher densities of integration in integrated photonics circuits that is possible today is discussed. Relevant figures of merit are formulated to this end and used to achieve good performance of devices with today's materials and to define required improvements in materials characteristics in terms of decreased scattering rates in the Drude model. The general conclusion is that some metal based circuits are feasible with today's matals. Frequency selective metal devices will have Q values on the order of only 10-100, and significant improvements of scattering rates or lowering of the imaginary part of e have to be achieved to implement narrowband devices. A photonic "Moore's law" of integration densities is proposed and exemplified.
基金We are grateful for financial supports from the National Key Research and Development Program of China(2019YFB2203904)the National Natural Science Foundation of China(U21A20506,62105122,61827820,62005233)+1 种基金the Shenzhen STIC Funding(RCBS20200714114819032)the Local Innovative and Research Teams Project of Guangdong Pear River Talents Program(2019BT02X105).
文摘We report broadband all-fiber optical phase modulation based on the photo-thermal effect in a gas-filled hollow-core fiber.The phase modulation dynamics are studied by multi-physics simulation.A phase modulator is fabricated using a 5.6-cm-long anti-resonant hollow-core fiber with pure acetylene filling.It has a half-wave optical power of 289 mW at 100 kHz and an average insertion loss 0.6 dB over a broad wavelength range from 1450 to 1650 nm.The rise and fall time constants are 3.5 and 3.7μs,respectively,2–3 orders of magnitude better than the previously reported microfiber-based photo-thermal phase modulators.The gas-filled hollow-core waveguide configuration is promising for optical phase modulation from ultraviolet to mid-infrared which is challenging to achieve with solid optical fibers.
基金supported by the Natural Science Foundation of China(22075043,21875034,61704093)。
文摘A pioneering glass-compatible transparent temperature alarm system self-powered by luminescent solar concentrators(LSCs) is reported.Single green-emitted organic manganese halides(OMHs) of PEA_(2)MnBr_(2)I_(2),which has a unique temperature-dependent backward energy transfer process from selftrapped state to^(4)T_(1)energy level of Mn,is used for triggering the temperature alarm.The LSC with redemitted CsPbI_(3)perovskite-polymer composite films on the glass substrate is used for power supply.The spectrally separated nature between the green-emitted OMHs for temperature alarm and red-emitted CsPbI3in LSC for power supply allows for probing the signal light of temperature-responsive OMHs without the interference of LSCs,making it possible to calibrate the temperature visually just by a self-powered brightness detection circuit with LED indicators.Taking advantage of LSC without hot spot effects plaguing the solar cells,as-prepared temperature alarm system can operate well on both sunny and cloudy day.
基金supported by the Natural Science Foundation of Fujian Province of China(Grant No.2020J01008)the National Natural Science Foundation of China(Grant No.12174382)。
文摘Janus WSSe monolayer is a novel two-dimensional(2D)material that breaks the out-of-plane mirror symmetry and has a large built-in electric field.These features lead to sizable Rashba spin-orbit coupling and enhanced nonlinear optical properties,making it a promising material platform for various spintronic and optoelectronic device applications.In recent years,nonlinear photocurrent responses such as shift and injection currents were found to be closely related to the quantum geometry and Berry curvature of materials,indicating that these responses can serve as powerful tools for probing the novel quantum properties of materials.In this work,we investigate the second-order nonlinear photocurrent responses in a Janus WSSe monolayer theoretically based on first-principles calculations and the Wannier interpolation method.It is demonstrated that the Janus WSSe monolayer exhibits significant out-of-plane nonlinear photocurrent coefficients,which is distinct from the nonJanus structures.Our results also suggest that the second-order nonlinear photocurrent response in the Janus WSSe monolayer can be effectively tuned by biaxial strain or an external electric field.Thus,the Janus WSSe monolayer offers a unique opportunity for both exploring nonlinear optical phenomena and realizing flexible 2D optoelectronic nanodevices.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61176092,61036003,and 60837001)the National Basic Research Program of China (Grant No. 2012CB933503)+1 种基金the Ph.D. Program Foundation of Ministry of Education of China (Grant No. 20110121110025)the Fundamental Research Funds for the Central Universities,China (Grant No. 2010121056)
文摘Wet thermal annealing effects on the properties of TaN/HfO2/Ge metal-oxide-semiconductor (MOS) structures with and without a GeO2 passivation layer are investigated. The physical and the electrical properties are characterized by X-ray photoemission spectroscopy, high-resolution transmission electron microscopy, capacitance-voltage (C-V) and current-voltage characteristics. It is demonstrated that wet thermal annealing at relatively higher temperature such as 550 ℃ can lead to Ge incorporation in HfO2 and the partial crystallization of HfO2, which should be responsible for the serious degradation of the electrical characteristics of the TaN/HfO2/Ge MOS capacitors. However, wet thermal annealing at 400 ℃ can decrease the GeOx interlayer thickness at the HfO2/Ge interface, resulting in a significant reduction of the interface states and a smaller effective oxide thickness, along with the introduction of a positive charge in the dielectrics due to the hydrolyzable property of GeOx in the wet ambient. The pre-growth of a thin GeO2 passivation layer can effectively suppress the interface states and improve the C V characteristics for the as-prepared HfO2 gated Ge MOS capacitors, but it also dissembles the benefits of wet thermal annealing to a certain extent.
基金Supported by the Program for the New Century Excellent Talents, Excellent Young Teachers in Universities and Scientific Research Foundation for Returned 0verseas Chinese Scholars by M0E and the Natural Science Foundation of Tianjin City 05YFGPGX05100.
文摘A laser-diode-pumped 1.54-μm passive Q-switched erbium doped glass laser was reported. We utilize a laser diode with wavelength of 973nm to pump a 1-mm Er/Yb co-doped phosphate glass with the erbium and ytterbium concentrations of 1 wt.% and 21 wt.%, respectively. A Co^2+ :MgAl2O4 slab crystal was used as a passive Q- switcher. Q-switched pulses with repetition frequency of 800Hz, width of 7.4ns, peak power of 2.2kW and average power of 13.3 m W were obtained when absorbed pump power was 4 75 m W. A sandwich structure of the Q- switched microchip Er/Yb glass laser was demonstrated, which shows shorter pulse width of 6.8 ns. Dependences of pulse duration and repetition frequency on pump power were also investigated.
基金Supported by the National Natured Science Foundation of China under Grant Nos 60278006, 60378013 and 10474047.
文摘Using fully incoherent white light emitted from an incandescent bulb (a line source) and amplitude mask, we study experimentally the interaction between two 21) white-light photovoltaic dark spatial solitons with three different separations (40μm, 50μm and 60μm) and arrangement directions (parallel to, perpendicular to and tilted at 45° with respect to the crystalline c axis) propagating in parallel in close proximity in seff-defocusing LiNbO3:Fe crystal. Experimental results reveal that a 21) white-light dark soliton pair only experiences attractive forces when their mutual separation is sufflciently small (〈 60 μm), and the degree of the attraction depends on their mutual separation and their arrangement direction. When the separation is larger than 60 μm, the interaction is not evident.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10774001, 60736033, 60776041 and 60876041, and National Basic Research Program of China under Grant Nos 2006CB604908 and 2006CB921607, and the National Key Basic R&D Plan of China under Grant Nos TG2007CB307004.
文摘We report on the growth and fabrication of deep ultraviolet (DUV) light emitting diodes (LEDs) on an AIN template which was grown on a pulsed atomic-layer epitaxial buffer layer. Threading dislocation densities in the AlN layer are greatly decreased with the introduction of this buffer layer. The crystalline quality of the AlGaN epilayer is further improved by using a low-temperature GaN interlayer between AlGaN and AlN. Electroluminescences of different DUV-LED devices at a wavelength of between 262 and 317nm are demonstrated. To improve the hole concentration of p-type AlGaN, Mg-doping with trimethylindium assistance approach is performed. It is found that the serial resistance of DUV-LED decreases and the performance of DUV-LED such as EL properties is improved.
基金Project supported partly by the National Natural Science Foundation of China (Grant Nos 60637010 and 60671036)the National Basic Research Program of China (Grant No 2007CB310403)the Tianjin Applied Fundamental Research Project, China(Grant No 07JCZDJC05900)
文摘In this paper we report on a continuous-wave (CW) intracavity singly resonant optical parametric oscillator (ICSRO) based on periodically poled LiNbO3 (PPLN) pumped by a diode-end-pumped CW Nd:YVO4 laser. Considering the thermal lens effects and diffraction loss, an optical ballast lens and a near-concentric cavity are adopted for better operation. Through varying the grating period and the temperature, the tunable signal output from 1406 nm to 1513 nm is obtained. At a PPLN grating period of 29 pm and a temperature of 413 K, a maximum signal output power of 820 mW at 1500 nm is achieved when the 808 nm pump power is 10.9 W, leading to an optical-to-optical conversion efficiency of 7.51%.
基金Project supported by the National Natural Science Foundation of China(Grant No.61673287)。
文摘We use the label-free microsphere-assisted microscopy to image low-contrast hexagonally close-packed polystyrene nanoparticle arrays with diameters of 300 and 250 nm.When a nanoparticle array is directly placed on a glass slide,it cannot be distinguished.If a 30-nm-thick Ag film is deposited on the surface of a nanoparticle array,the nanoparticle array with nanoparticle diameters of 300 and 250 nm can be distinguished.In addition,the Talbot effect of the 300-nm-diameter nanoparticle array is also observed.If a nanoparticle sample is assembled on a glass slide deposited with a 30-nm-thick Ag film,an array of 300-nm-diameter nanoparticles can be discerned.We propose that in microsphere-assisted microscopy imaging,the resolution can be improved by the excitation of surface plasmon polaritons(SPPs) on the sample surface or at the sample/substrate interface,and a higher near-field intensity due to the excited SPPs would benefit the resolution improvement.Our study of label-free super-resolution imaging of low-contrast objects will promote the applications of microsphere-assisted microscopy in life sciences.
基金Project supported by the National Natural Science Foundation of China (Grant No 60278007), the Natural Science Foundation of Tianjin (Grant No 033601311) and the Natural Science Foundation of Guangdong Province (Grant No 04011427).
文摘Based on the diffusion approximate theory (DA), a theoretical model about the distribution of the intensity of a narrow collimation beam illuminating on a semi-lnfinite biological tissue is developed. In order to verify the correctness of the model, a novel method of measuring the distributions of the intensity of light in Intralipid-10% suspension at 650 nm is presented and ts of the distributions of the distance-dependent intensity of scattering light in different directions are made. The investigations show that the results from our diffusion model are in good agreement with the experimental results beyond and in the areas around the light source, and the distance-dependent intensity in the incident direction attenuates approximately in the exponential form. Furthermore, our theoretic results indicate the anisotropic characteristics of the intensity in different directions of scattering light inside the biological tissue.
基金This workis supported by Jiangsu Province Natural Science Fou-ndation of China under project BK2004207 the National Sci-ence Fund for Distinguished Young Scholars under project60125513 .
文摘The spectra of fiber Bragg grating (FBG) in inhomogeneous strain fields are distorted due to its inhomogeneity of both the periods and the effective refractive index. The couple mode theory and the Runge-Kutta method can be employed for exact simulation of the spectrum of Bragg grating in such field, but the convergence speed is slow. On the other hand, although the transfer matrix method could be used with higher convergence speed, the precision is poor because of the neglect of the grads of strain change. By improving the FBG equivalent period, a novel simulation method based on a modified transfer matrix method is proposed, which has the advantage of quick-convergence as well as good accuracy.
基金Supported by the University of Malaya under Grant No PG100-2014B
文摘We demonstrate a Q-switched ytterbium-doped fiber laser (YDFL) using a newly developed multi-layer black phosphorous (BP) saturable absorber (SA). The BP SA is prepared by mechanically exfoliating a BP crystal and sticking the acquired BP flakes onto a scotch tape. A small piece of the tape is then placed between two ferrules and incorporated in a YDFL cavity to achieve a stable Q-switched operation in a 1.0 μm region. The laser has a pump threshold of 55.1 mW, a pulse repetition rate that is tunable from 8.2 to 32.9 kHz, and the narrowest pulse width of 10.8 μs. The highest pulse energy of 328 nJ is achieved at the pump power of 97.6 mW. Our results show that multi-layer BP is a promising SA for Q-switching laser operation.
基金Supported by Tianjin Natural Science Foundation under Grant No.99380111the National Natural Science Foundation of China under Grant No.69825108。
文摘The typical laser characteristics of a laser diode pumped,solid-state laser with a Z-type resonator structure are analyzed by the transform circle approach.Laser waists change with the thennal focus length of the lasing medium so that the output power becomes unstable.In particular,there is a very unstable operation region when the pump power is of medium magnitude.A method is put forward to avoid this situation.
文摘A symmetrical π-shaped metamaterial is investigated. Numerical simulations exhibit the negative-refractive property of this structure. The complex refractive index n, wave impedance z, effective permittivity ε and effective permeability μ have been retrieved from the simulated S parameters. The negative-refractive band lies between 11.2 GHz and 13.05 GHz. The frequency band with high transmission with low loss occurs between 11.95 GHz and 12.5 GHz, which is helpful for practical applications. The mechanism of the electromagnetic resonance is also revealed.
基金Supported by the National Natural Science Foundation of China under Grant Nos 10574074, 60178024 and 10334010, the National Basic Research Program of China under Grant No 2007CB307002, the 111 Project of the Ministry of Education of China under Grant No B07013, the Changjiang Scholars and Innovative Research Team in University and the Cultivation Fund of the Key Scientific and Technical Innovation Project from the Ministry of Education of China under Grant No 704012, and the Key International S&T Cooperation Project under Grant No 2005DFA0170.
文摘The emission at 1530nm and its applications in optical communications are discussed. The efficient width of the emission band △eff, which is up to 91 nm, is larger as compared with silica-based glass, bismuth glass and ZrF4-BaF2-LaFa-AIF3-NaF (ZBLAN) glass doped by Er^3+ ions. Under the excitation of 785 nm laser, the emission integral intensity of 153Onto increases about five times in the glass ceramics higher than that in the glass. This is explained by the quantum cutting process by two-photon emission with phonon assistance. The results indicate that the glass ceramics are a promising candidate for developing broadband optical amplifiers in wavelength-division multiplexed systems.
文摘Second harmonic generation (SHG) of a new organic optical crystal-urea L-malic acid (ULMA) was studied. A comparison of SHG efficiency of ULMA and KDP at a fundamental wavelength of 1064 nm using the Kurtz powder method demonstrated that the second order nonlinear coefficient of ULMA is 1 57 times of that of KDP,and the damage threshold of ULMA is relatively higher Finally,both Type Ⅰ and Type Ⅱ phase match angles of the biaxial crystal ULMA were calculated.
文摘We demonstrate a Q-switched Raman fiber laser using molybdenum disulfide (MoS2) as a saturable absorber (SA). The SA is assembled by depositing a mechanically exfoliated MoS2 onto a fiber ferrule facet before it is matched with another clean ferrule via a connector. It is inserted in a Raman fiber laser cavity with a total cavity length of about 8kin to generate a Q-switching pulse train operating at 1560.2nm. A 7.7-kin-long dispersion compensating fiber with 584 ps.nm-i km-1 of dispersion is used as a nonlinear gain medium. As the pump power is increased from 395 m W to 422 m W, the repetition rate of the Q-switching pulses can be increased from 132.7 to 137.4 kHz while the pulse width is concurrently decreased from 3.35μs to 3.03μs. The maximum pulse energy of 54.3 nJ is obtained at the maximum pump power of 422 roW. These results show that the mechanically exfoliated MoS2 SA has a great potential to be used for pulse generation in Raman fiber laser systems.
基金Supported by the National Basic Research Program of China("973"Program,No.2010CB327800)National Natural Science Foundation of China(No.11004150)Postdoctoral Science Foundation of China(No.20090460690)
文摘Irradiated by infrared laser, the surface reducibility and adsorbability of Cu-Cr complex could be improved, owing to the interaction of photo-fragmentation and laser texturing. Analyzed by the binding energy spectra and the auger spectra, the valence states of chromium ion and copper ion were+3 and+1 after radiation respectively, which still had the reducibility to release electrons. In contrast with the near-infrared(NIR)1 064 nm and mid-infrared(MIR) 10 600 nm laser at the same average output power of 15 W, the reduced metal percentage in the Cu-Cr complex was obviously distinguished at the depth from nanometer to micron. After chemical plating, the average coating thickness and mean-square deviation of the NIR sample were 11.61 μm and 0.30 for copper layer, and 2.69 μm and 0.08 for nickel layer. The results were much better than those of the MIR sample.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61176092 and 61474094)the National Basic Research Program of China(Grant Nos.2012CB933503 and 2012CB632103)the National Natural Science Foundation of China–National Research Foundation of Korea Joint Research Project(Grant No.11311140251)
文摘Modulation of the Schottky barrier heights was successfully demonstrated for WNx/p-Ge and WNx/n-Ge contacts by increasing the nitrogen component in the WNx films. The WN0.38/p-Ge contact exhibits rectifying characteristic and an apparent Schottky barrier of 0.49 eV while the WN0.38/n-Ge Schottky contact exhibits quasi-Ohmic current–voltage characteristics. Dipoles formed at the contact interface by the difference of the Pauling electronegativities of Ge and N are confirmed to alleviate the Fermi-level pinning effect.