The recently re-emerged mpox(monkeypox)virus that causes mpox disease is a member of genus Orthopoxvirus and has unprecedentedly spread worldwide.Numerous studies have contributed to our understanding of its evolution...The recently re-emerged mpox(monkeypox)virus that causes mpox disease is a member of genus Orthopoxvirus and has unprecedentedly spread worldwide.Numerous studies have contributed to our understanding of its evolution,pathophysiology,and clinical manifestations.The current outbreak of the mpox virus depicts its novel route of transmission as a new variant.However,the exact reason for its transition from an epidemic to a pandemic remains unclear.Furthermore,other poxviruses such as vaccinia virus,variola virus,and cowpox virus,also belong to the same genus,Orthopoxvirus.In the present review,our objective was to summarize the evidence on evolution,pathophysiology,and clinical manifestations of mpox virus and its related poxviruses.The present review would aid in a better understanding of the current circulating mpox virus and its differences from other poxviruses.In addition,the shared genetic factors contributing to virulence in these Orthopoxvirus highlight their evolutionary connections and genetic similarities.While they exhibit differences in virulence,studying these genetic relationships is crucial for understanding their biology,pathogenicity,and the development of effective vaccines and antiviral therapeutics to curb mpox disease.展开更多
Course based ideological and political education (CIPE) is an important way to improve the quality of ideological and political work and talent cultivation. This study explores for the first time the implementation of...Course based ideological and political education (CIPE) is an important way to improve the quality of ideological and political work and talent cultivation. This study explores for the first time the implementation of ideological and political education in the teaching of pathophysiology courses, and also analyzes the evaluation of student psychological status and the importance of mental health education in the implementation of IPE courses. A survey was conducted on 211 students at Yangtze University to understand their motivation and behavior towards learning ideological, political, and pathophysiological courses. In addition, a questionnaire survey was used to explore the relationship between pathophysiology and ideological and political courses, as well as the importance of their satisfaction with the implementation of ideological and political courses in pathophysiology and mental health education. The research results indicate that factors such as educational background and gender differences affect the learning of CIPE. Graduate students are more interested in ideological and political courses, while female students find it difficult to study pathophysiology;In addition, the results of one-way ANOVA indicate that the implementation effect of IPE in pathophysiology courses depends on the level of interest in IPE and pathophysiology courses, the level of consideration for the importance of professional courses, the professional gains after studying pathophysiology, and the level of understanding of the relationship between IPE and CIPE. 81.04% of students believe that in the CIPE process, telling stories by teachers themselves is the most popular way of communication and education. This reflects the importance of mental health education from the perspective of CIPE. In addition, this study also indicates that PBL and flipped classroom teaching models are popular teaching models in CIPE. This study is beneficial for promoting the improvement and implementation of CIPE and mental health education in higher education curricula, thus providing valuable insights for educational decision-makers.展开更多
Mitigating preterm encephalopathy continues to be one of the greatest challenges in perinatal medicine.Preterm encephalopathy is associated with high mortality,serious morbidity,and significant socio-economic impacts ...Mitigating preterm encephalopathy continues to be one of the greatest challenges in perinatal medicine.Preterm encephalopathy is associated with high mortality,serious morbidity,and significant socio-economic impacts on the individuals,their families,and public health sectors and welfare systems that last a lifetime.The cost of disability associated with preterm brain injury continues to rise.Prevention of this injury,and disability,would significantly reduce this socioeconomic burden.展开更多
Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their r...Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates.展开更多
Forest structure and function strongly depend on and concurrently influence environmental conditions.Tree performance is generally governed by its genetics and environment;thus,recent hotspots in this field include tr...Forest structure and function strongly depend on and concurrently influence environmental conditions.Tree performance is generally governed by its genetics and environment;thus,recent hotspots in this field include tree genotype×environment,phenotype×environment,and functional trait×environment interactions.The editorial,review,and 22 original research articles in this Special Issue,"Tree ecophysiology in the context of climate change",highlight ecophysiological phenomena(e.g.,climate hormesis,seed germination,tree mortality),processes(e.g.,tree metabolism,photosynthate allocation,nutrient uptake and transport),indicators(e.g.,carbon sequestration,pollutants),measurements(e.g.,thermal time methods,soil quality indices,vegetation spectral index,and near-infrared leaf reflectance),and modeling(e.g.,climate correlations with tree growth,photo synthetic phenology,hydraulic strategies,OliveCan model)in the context of global climate change.Understanding forest-environment interactions from an ecophysiological perspective as climate changes provides insights into species fitness in suboptimal environments,species competition for limited resources,and phylogenetic divergence or convergence of species,and predicting species distributions.展开更多
In recent decades,genetic advances in yield improvement in the major cereal crops,including wheat,has stagnated or proceeded at a slower rate than is required to meet future global food demand,particularly in the face...In recent decades,genetic advances in yield improvement in the major cereal crops,including wheat,has stagnated or proceeded at a slower rate than is required to meet future global food demand,particularly in the face of climate change.To reverse this situation,and in view of the future climate scenario,there is a need to increase the genetic diversity of wheat to increase its productivity,quality,stability,and adaptation to local agro-environments.The abundant genetic resources and literature are a basis for wheat improvement.However,many species,such as wild relatives,landraces,and old cultivars have not been studied beyond their agronomic characteristics,highlighting the lack of understanding of the physiological and metabolic processes(and their integration) associated with higher productivity and resilience in limiting environments.Retrospective studies using wheat ancestors and modern cultivars may identify novel traits that have not previously been considered,or have been underestimated,during domestication and breeding,but that may contribute to future food security.This review describes existing wheat genetic diversity and changes that occurred during domestication and breeding,and considers whether mining natural variation among wheat ancestors offers an opportunity to enhance wheat agronomic performance,spike architecture,canopy-and organ-level photosynthetic capacity,and responses to abiotic stress,as well as to develop new wheat hybrids.展开更多
Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice...Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice (Oryza sativa L.). Higher root biomass, root oxidation activity, and cytokinin contents in roots are required for achieving more panicle number, more spikelets per panicle, greater grain-filling percentage, and higher grain yield. However, these root traits are not linearly correlated with yield components. When these traits reach very high levels, grain filling and grain yield are not necessarily enhanced. High numbers of mitochondria, Golgi bodies, and amyloplasts in root tip cells benefit root and shoot growth and yield formation. Proper crop management, such as an alternate wetting and moderate soil drying irrigation, can significantly improve ultra-structure of root tip cells, increase root length density and concentration of cytokinins in root bleedings, and consequently, increase grain-filling percentage, grain yield, and water use efficiency. Further studies are needed to investigate the mechanism underlying root-shoot and root-soil interactions for high grain yield, the roles of root-sourced hormones in regulating crop growth and development and the effects of soil moisture and nutrient management on the root architecture and physiology.展开更多
Objective: To investigate the electrophysiology effects and mechanism of iron overload on the slow response autorhythmic cells in the left ventricular outflow tract of guinea pigs.Methods: Standard microelectrode cell...Objective: To investigate the electrophysiology effects and mechanism of iron overload on the slow response autorhythmic cells in the left ventricular outflow tract of guinea pigs.Methods: Standard microelectrode cell recording techniques were adopted to observe the electrophysiological effects of different concentrations of Fe^(2+)(100 μmol/L, 200 μmol/L) on the left ventricular outflow tract autorhythmic cells.Heart tissues were perfused with FeSO_4(200 μmol/L) combing with CaCl_2(4.2 mmol/L), Verapamil,(1 μmol/L), and nickel chloride(200μmol/L) respectively to observe the influences of these contents on electrophysiology of FeSO_4(200μmol/L) on the left ventricular outflow tract autorhythmic cells.Results: Fe^(2+)at both 100 μmol/L and 200 μmol/L could change the electrophysiological parameters of the slow response autorhythmic cells of the left ventricular outflow tract in a concentrationdependent manner resulting into decrease in Vmax, APA and MDP, slower RPF and VDD, and prolonged APD_(50) and APD_(90)(P all <0.05).Besides, perfusion of increased Ca^(2+) concentration could partially offset the electrophysiological effects of Fe^(2+)(200 μmol/L).The L-type calcium channel(LTCC) blocker Verapamil(1 μmol/L) could block the electrophysiological effects of Fe^(2+)(200 μmol/L).But the T-type calcium channel(TTCC) blocker nickel chloride(NiCl_2, 200 μmol/L) could not block the electrophysiological effects of Fe^(2+)(200 μmol/L).Conclusions: Fe^(2+) can directly change the electrophysiological characteristics of the slow response autorhythmic cells of the left ventricular outflow tract probably through the L-type calcium channel.展开更多
In 1996,China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types.Today,approximately 80 super rice varieties have been released and some of them ...In 1996,China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types.Today,approximately 80 super rice varieties have been released and some of them show high grain yields of 12-21 t/hm2 in field experiments.The main reasons for the high yields of super rice varieties,compared with those of conventional varieties,can be summarized as follows:more spikelets per panicle and larger sink size (number of spikelets per square meter);larger leaf area index,longer duration of green leaf,greater photosynthetic rate,higher lodging resistance,greater dry matter accumulation before the heading stage,greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period;and larger root system and greater root activity.However,there are two main problems in super rice production:poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets),and low and unstable seed-setting rate.Here,we review recent research advances in the crop physiology of super rice,focusing on biological features,formation of yield components,and population quality.Finally,we suggest further research on crop physiology of super rice.展开更多
The patch clamp recording technique in vivois a blind patch clamp recording methods to record the current of the spinal or cereral neurons of anaes:hesia ( or awake) animals. This technique can be used to study the...The patch clamp recording technique in vivois a blind patch clamp recording methods to record the current of the spinal or cereral neurons of anaes:hesia ( or awake) animals. This technique can be used to study the synaptic function and plasticity in central nervous system in vivoin order to understand the physiological properties of the ion channels from an integrated point of view. The advantage of this technique have already presented itself in the study of the synaptic transmission and nervous network. Nowadays, in vivo patch whole-cell recording technique in combination with other techniques is becoming a common method in the research fields.展开更多
The editorial board of Acupuncture and Herbal Medicine recently convened an academic seminar with a focus on studies regarding the mechanisms mediating acupuncture efficacy and moxibustion action inspired by the 2021 ...The editorial board of Acupuncture and Herbal Medicine recently convened an academic seminar with a focus on studies regarding the mechanisms mediating acupuncture efficacy and moxibustion action inspired by the 2021 Nobel Prize in Physiology or Medicine.Specifically,Professor Bailong Xiao introduced the Nobel Prize for research on the mechanically activated Piezo ion channel,evaluating the structure of the Piezo channel and its physiological and pathological functions,and proposed a possible role for the Piezo channel in acupuncture mechanical stimulation.Professor Michael Xi Zhu introduced the discovery of the transient receptor potential(TRP)family,reporting that the therapeutic effects of Chinese medicine and acupuncture may be achieved via the TRP family,and that information regarding associations between the meridian and lymphatic systems may have important research and medical value.In addition,Professor Tianle Xu reviewed the history of ion channel research,particularly the physiological and pharmacological effects of non-classical ion channels(eg,the acid sensing ion channel family)and pointed out that the characterization and neural circuits of acupuncture deqi manipulation are important for elucidating the mechanisms of acupuncture actions.Professor Yongming Li similarly proposed that the 2021 Nobel Prize may open the door to disclosing the histological basis of acupuncture and moxibustion and analyzing the main scientific concerns regarding the clinical translation of acupuncture and moxibustion from basic to translational research.Finally,Professor Yi Guo summarized the study progress of the acupoint microenvironment induced by acupuncture over the course of nearly 30 years and put forward the hypothesis that acupuncture may initiate the physical-chemical coupling network by activating ion channel receptors in acupoints via physical and mechanical stimulation.Therefore,we conclude that a primary achievement of the 2021 Nobel Prize in Physiology or Medicine is in helping interpret how acupuncture and moxibustion adjust homeostasis(ie,by activating mechanical and thermal sensation),which is conducive to validating and promoting the clinical efficacy of acupuncture modalities.展开更多
Objective:To investigate the electrophysiological effects of hydrogen sulfide (H2S) on left ventricular outflow tract autonomic cells in guinea pigs and its mechanism.Methods:Intracellular microelectrode recording tec...Objective:To investigate the electrophysiological effects of hydrogen sulfide (H2S) on left ventricular outflow tract autonomic cells in guinea pigs and its mechanism.Methods:Intracellular microelectrode recording technique was used to observe the electrophysiological effects of different concentrations of hydrogen sulfide on the autonomic cells of left ventricular outflow tract.Results: CSE irreversible inhibitor PPG (200 μmol/L) makes the left ventricular outflow tract of autorhythmic cells Vmax, RPF and VDD accelerate, APA increase (P<0.05);CBS synthase inhibitor AOAA (100μmol/L) acts on the autorhythmic cells of the left ventricular outflow tract without effect. The concentration-dependency of the 50, 100 and 200μmol/L NaHS made RPF and VDD of autorhythmic cell of the left ventricular outflow tract decrease with increasing concentration of NaHS, Vmax and APA decrease (P<0.01). The ATP sensitive potassium channel (KATP) blocker glybenclamide (Gli, 20 μmol/L) partially blocked the electrophysiological effects of NaHS (P<0.05). The L-Ca2+ channel agonist Bay K8644 could partially block the electrophysiological effects of NaHS.Conclusion:The autorhythmic cells of the left ventricular outflow tract had endogenous H2S produced by CSE. H2S had a negative chronotropic effect on autorhythmic cells in the left ventricular outflow tract, and its mechanism was related to the inhibition of L-Ca2+ channels by the open KATP pathway.展开更多
Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome(IBS). However, partly due to the lack of disease-defining biomarkers, unde...Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome(IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares.Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS.展开更多
The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the f...The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper- sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis.展开更多
The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that p...The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.展开更多
Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients.Independent of hypertension and coronary artery disease,diabetes is associated with a specific cardiomyopathy,...Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients.Independent of hypertension and coronary artery disease,diabetes is associated with a specific cardiomyopathy,known as diabetic cardiomyopathy(DCM).Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease,beginning early after the onset of type 1 and type 2 diabetes,ahead of left ventricular remodeling and overt diastolic dysfunction.Although the molecular pathogenesis of early DCM still remains largely unclear,activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction.Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development,relaxation and stability under pathophysiological stresses.These changes include perturbed calcium handling,suppressed activity of aerobic energy producing enzymes,altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins,reduced actin-myosin cross-bridge cycling and dynamics,and changed myofilament calcium sensitivity.In this review,we will present and discuss novel aspects of the molecular pathogenesis of early DCM,with a special focus on the sarcomeric contractile apparatus.展开更多
This review provides information on the definition of constipation, normal continence and defecation and a description of the pathophysiologic mechanisms of constipation. In addition, changes in the anatomy and physio...This review provides information on the definition of constipation, normal continence and defecation and a description of the pathophysiologic mechanisms of constipation. In addition, changes in the anatomy and physiology of the lower gastrointestinal tract associated with aging that may contribute to constipation are described. MEDLINE (1966-2007) and CINAHL (1980-2007) were searched. The following MeSH terms were used: constipation/etiology OR constipation/ physiology OR constipation/physiopathology) AND (age factors OR aged OR older OR 80 and over OR middle age). Constipation is not well defined in the literature. While self-reported constipation increases with age, findings from a limited number of clinical studies that utilized objective measures do not support this association. Dysmotility and pelvic floor dysfunction are important mechanisms associated with constipation. Changes in GI function associated with aging appear to be relatively subtle based on a limited amount of conflicting data. Additional research is warranted on the effects of aging on GI function, as well as on the timing of these changes.展开更多
Fistulae represent an important complication in patient suffering from Crohn's disease(CD). Cumulative incidence of fistula formation in CD patients is 17%-50% and about one third of patients suffer from recurring...Fistulae represent an important complication in patient suffering from Crohn's disease(CD). Cumulative incidence of fistula formation in CD patients is 17%-50% and about one third of patients suffer from recurring fistulae formation. Medical treatment options often fail and also surgery frequently is not successful. Available data indicate that CD-associated fistulae originate from an epithelial defect that may be caused by ongoing inflammation. Having undergone epithelial to mesenchymal transition(EMT), intestinal epithelial cells(IEC) penetrate into deeper layers of the mucosa and the gut wall causing localized tissue damage formation of a tube like structure and finally a connection to other organs or the body surface. EMT of IEC may be initially aimed toimprove wound repair mechanisms since "conventional" wound healing mechanisms, such as migration of fibroblasts, are impaired in CD patients. EMT also enhances activation of matrix remodelling enzymes such as matrix metalloproteinase(MMP)-3 and MMP-9 causing further tissue damage and inflammation. Finally, soluble mediators like TNF and interleukin-13 further induce their own expression in an autocrine manner and enhance expression of molecules associated with cell invasiveness aggravating the process. Additionally, pathogen-associated molecular patterns also seem to play a role for induction of EMT and fistula development. Though current knowledge suggests a number of therapeutic options, new and more effective therapeutic approaches are urgently needed for patients suffering from CD-associated fistulae. A better understanding of the pathophysiology of fistula formation, however, is a prerequisite for the development of more efficacious medical anti-fistula treatments.展开更多
The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the micr...The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status.展开更多
Use of alcohol is a worldwide habit regardless of socio- economic background. Heavy alcohol consumption is a potential risk factor for induction of pancreatitis. The current review cites the updated literature on the ...Use of alcohol is a worldwide habit regardless of socio- economic background. Heavy alcohol consumption is a potential risk factor for induction of pancreatitis. The current review cites the updated literature on the alcohol metabolism, its effects on gastrointestinal and pancreatic function and in causing pancreatic injury, genetic predisposition of alcohol induced pancreatitis. Reports describing prospective mechanisms of action of alcohol activating the signal transduction pathways, induction of oxidative stress parameters through the development of animal models are being presented.展开更多
文摘The recently re-emerged mpox(monkeypox)virus that causes mpox disease is a member of genus Orthopoxvirus and has unprecedentedly spread worldwide.Numerous studies have contributed to our understanding of its evolution,pathophysiology,and clinical manifestations.The current outbreak of the mpox virus depicts its novel route of transmission as a new variant.However,the exact reason for its transition from an epidemic to a pandemic remains unclear.Furthermore,other poxviruses such as vaccinia virus,variola virus,and cowpox virus,also belong to the same genus,Orthopoxvirus.In the present review,our objective was to summarize the evidence on evolution,pathophysiology,and clinical manifestations of mpox virus and its related poxviruses.The present review would aid in a better understanding of the current circulating mpox virus and its differences from other poxviruses.In addition,the shared genetic factors contributing to virulence in these Orthopoxvirus highlight their evolutionary connections and genetic similarities.While they exhibit differences in virulence,studying these genetic relationships is crucial for understanding their biology,pathogenicity,and the development of effective vaccines and antiviral therapeutics to curb mpox disease.
文摘Course based ideological and political education (CIPE) is an important way to improve the quality of ideological and political work and talent cultivation. This study explores for the first time the implementation of ideological and political education in the teaching of pathophysiology courses, and also analyzes the evaluation of student psychological status and the importance of mental health education in the implementation of IPE courses. A survey was conducted on 211 students at Yangtze University to understand their motivation and behavior towards learning ideological, political, and pathophysiological courses. In addition, a questionnaire survey was used to explore the relationship between pathophysiology and ideological and political courses, as well as the importance of their satisfaction with the implementation of ideological and political courses in pathophysiology and mental health education. The research results indicate that factors such as educational background and gender differences affect the learning of CIPE. Graduate students are more interested in ideological and political courses, while female students find it difficult to study pathophysiology;In addition, the results of one-way ANOVA indicate that the implementation effect of IPE in pathophysiology courses depends on the level of interest in IPE and pathophysiology courses, the level of consideration for the importance of professional courses, the professional gains after studying pathophysiology, and the level of understanding of the relationship between IPE and CIPE. 81.04% of students believe that in the CIPE process, telling stories by teachers themselves is the most popular way of communication and education. This reflects the importance of mental health education from the perspective of CIPE. In addition, this study also indicates that PBL and flipped classroom teaching models are popular teaching models in CIPE. This study is beneficial for promoting the improvement and implementation of CIPE and mental health education in higher education curricula, thus providing valuable insights for educational decision-makers.
基金This work was supported by Health Research Council of New Zealand(grants 17/601 and 22/559)the Auckland Medical Research Foundation,the Lottery Health Grants Board of New Zealand,the C.J.Martin Postdoctoral Fellowship and project grant from the National Health and Medical Research Council of Australia(APP1090890 and APP1164954)the Victorian Government’s Operational Infrastructure Support Program(to RG).
文摘Mitigating preterm encephalopathy continues to be one of the greatest challenges in perinatal medicine.Preterm encephalopathy is associated with high mortality,serious morbidity,and significant socio-economic impacts on the individuals,their families,and public health sectors and welfare systems that last a lifetime.The cost of disability associated with preterm brain injury continues to rise.Prevention of this injury,and disability,would significantly reduce this socioeconomic burden.
基金the National Natural Science Foundation of China(32071947,32071944,31871557)the Open Project of Jiangsu Key Laboratory of Crop Genetics and Physiology(YCSL202102)+1 种基金the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)the Postgraduate Research&Practice Innovation Program of Jiangsu province(KYCX21_3235).
文摘Root morphology and physiology influence aboveground growth and yield formation in rice.However,root morphological and physiological differences among rice varieties with differing nitrogen(N)sensitivities and their relationship with grain yield are still unclear.In this study,rice varieties differing in N sensitivity over many years of experiments were used.A field experiment with multiple N rates(0,90,180,270,and 360 kg ha^(-1))was conducted to elucidate the effects of N application on root morphology,root physiology,and grain yield.A pot experiment with root excision and exogenous application of 6-benzyladenine(6-BA)at heading stage was used to further verify the above effects.The findings revealed that(1)under the same N application rate,N-insensitive varieties(NIV)had relatively large root biomass(root dry weight,length,and number).Grain yield was associated with root biomass in NIV.The oxidation activity and zeatin(Z)+zeatin riboside(ZR)contents in roots obviously and positively correlated with grain yield in N-sensitive varieties(NSV),and accounted for its higher grain yield than that of NIV at lower N application rates(90 and 180 kg ha^(-1)).(2)The root dry weight required for equal grain yield of NIV was greater than that of NSV.Excision of 1/10 and 1/8 of roots at heading stage had no discernible effect on the yield of Liangyoupeijiu(NIV),and it significantly reduced yield by 11.5%and 21.3%in Tianyouhuazhan(NSV),respectively,compared to the treatment without root excision.The decrease of filled kernels and grain weight after root excision was the primary cause for the yield reduction.Root excision and exogenous 6-BA application after root excision had little influence on the root activity of NIV.The oxidation activity and Z+ZR contents in roots of NSV decreased under root excision,and the increase in the proportion of excised roots aggravated these effects.The application of exogenous 6-BA increased the root activity of NSV and increased filled kernels and grain weight,thereby reducing yield loss after root excision.Thus,the root biomass of NIV was large,and there may be a phenomenon of"root growth redundancy."Vigorous root activity was an essential feature of NSV.Selecting rice varieties with high root activity or increasing root activity by cultivation measures could lead to higher grain yield under lower N application rates.
基金the Excellence Action Plan for China STM Journals(EAPCSTMJ-C-077)International Infl uence Promotion Project of China STM Journals(Journal of Forestry ResearchPIIJ2-B-18).
文摘Forest structure and function strongly depend on and concurrently influence environmental conditions.Tree performance is generally governed by its genetics and environment;thus,recent hotspots in this field include tree genotype×environment,phenotype×environment,and functional trait×environment interactions.The editorial,review,and 22 original research articles in this Special Issue,"Tree ecophysiology in the context of climate change",highlight ecophysiological phenomena(e.g.,climate hormesis,seed germination,tree mortality),processes(e.g.,tree metabolism,photosynthate allocation,nutrient uptake and transport),indicators(e.g.,carbon sequestration,pollutants),measurements(e.g.,thermal time methods,soil quality indices,vegetation spectral index,and near-infrared leaf reflectance),and modeling(e.g.,climate correlations with tree growth,photo synthetic phenology,hydraulic strategies,OliveCan model)in the context of global climate change.Understanding forest-environment interactions from an ecophysiological perspective as climate changes provides insights into species fitness in suboptimal environments,species competition for limited resources,and phylogenetic divergence or convergence of species,and predicting species distributions.
基金the support of Funda??o para a Ciência e a Tecnologia (FCT, Portugal), through the GREEN-IT–Bioresources for Sustainability R&D Unit (UIDB/04551/2020, UIDP/04551/2020)the LS4FUTURE Associated Laboratory (LA/P/0087/2020)+1 种基金funded by FCT through the Program ‘Concurso de Estímulo ao Emprego Científico Institucional’ (CEECINST/00102/2018/CP1567/CT0039)the support from ICREA Acadèmia, Generalitat de Catalunya, and the project PID2019-106650RB-C21 from the Ministerio de Ciencia e Innovación, Spain。
文摘In recent decades,genetic advances in yield improvement in the major cereal crops,including wheat,has stagnated or proceeded at a slower rate than is required to meet future global food demand,particularly in the face of climate change.To reverse this situation,and in view of the future climate scenario,there is a need to increase the genetic diversity of wheat to increase its productivity,quality,stability,and adaptation to local agro-environments.The abundant genetic resources and literature are a basis for wheat improvement.However,many species,such as wild relatives,landraces,and old cultivars have not been studied beyond their agronomic characteristics,highlighting the lack of understanding of the physiological and metabolic processes(and their integration) associated with higher productivity and resilience in limiting environments.Retrospective studies using wheat ancestors and modern cultivars may identify novel traits that have not previously been considered,or have been underestimated,during domestication and breeding,but that may contribute to future food security.This review describes existing wheat genetic diversity and changes that occurred during domestication and breeding,and considers whether mining natural variation among wheat ancestors offers an opportunity to enhance wheat agronomic performance,spike architecture,canopy-and organ-level photosynthetic capacity,and responses to abiotic stress,as well as to develop new wheat hybrids.
基金supported by the National Natural Science Foundation of China (31061140457, 31071360)the National Basic Research Program of China (2009CB118603)+3 种基金the Natural Science Foundation of Jiangsu Province, China(BK2009-005)the Key Technologies R&D Program of Chinaduring the 12th Five-Year Plan period (2011BAD16B14)the Program of Advantage Discipline of Jiangsu Provincethe Hong Kong Research Grants Council, China (HKBU262809)
文摘Root system is a vital part of plant and regulates many aspects of shoot growth and development. This paper reviews how some traits of root morphology and physiology are related to the formation of grain yield in rice (Oryza sativa L.). Higher root biomass, root oxidation activity, and cytokinin contents in roots are required for achieving more panicle number, more spikelets per panicle, greater grain-filling percentage, and higher grain yield. However, these root traits are not linearly correlated with yield components. When these traits reach very high levels, grain filling and grain yield are not necessarily enhanced. High numbers of mitochondria, Golgi bodies, and amyloplasts in root tip cells benefit root and shoot growth and yield formation. Proper crop management, such as an alternate wetting and moderate soil drying irrigation, can significantly improve ultra-structure of root tip cells, increase root length density and concentration of cytokinins in root bleedings, and consequently, increase grain-filling percentage, grain yield, and water use efficiency. Further studies are needed to investigate the mechanism underlying root-shoot and root-soil interactions for high grain yield, the roles of root-sourced hormones in regulating crop growth and development and the effects of soil moisture and nutrient management on the root architecture and physiology.
基金supported by Zhangjiakou Project of Science and Technology Studies and Development Planning(Grand No.1321078D)
文摘Objective: To investigate the electrophysiology effects and mechanism of iron overload on the slow response autorhythmic cells in the left ventricular outflow tract of guinea pigs.Methods: Standard microelectrode cell recording techniques were adopted to observe the electrophysiological effects of different concentrations of Fe^(2+)(100 μmol/L, 200 μmol/L) on the left ventricular outflow tract autorhythmic cells.Heart tissues were perfused with FeSO_4(200 μmol/L) combing with CaCl_2(4.2 mmol/L), Verapamil,(1 μmol/L), and nickel chloride(200μmol/L) respectively to observe the influences of these contents on electrophysiology of FeSO_4(200μmol/L) on the left ventricular outflow tract autorhythmic cells.Results: Fe^(2+)at both 100 μmol/L and 200 μmol/L could change the electrophysiological parameters of the slow response autorhythmic cells of the left ventricular outflow tract in a concentrationdependent manner resulting into decrease in Vmax, APA and MDP, slower RPF and VDD, and prolonged APD_(50) and APD_(90)(P all <0.05).Besides, perfusion of increased Ca^(2+) concentration could partially offset the electrophysiological effects of Fe^(2+)(200 μmol/L).The L-type calcium channel(LTCC) blocker Verapamil(1 μmol/L) could block the electrophysiological effects of Fe^(2+)(200 μmol/L).But the T-type calcium channel(TTCC) blocker nickel chloride(NiCl_2, 200 μmol/L) could not block the electrophysiological effects of Fe^(2+)(200 μmol/L).Conclusions: Fe^(2+) can directly change the electrophysiological characteristics of the slow response autorhythmic cells of the left ventricular outflow tract probably through the L-type calcium channel.
基金supported by grants from the National Natural Science Foundation of China(Grant Nos.31061140457 and 31071360)the National Basic Research Program(Grant Nos.2009CB118603 and 2012CB114306)+1 种基金the National Key Technology Support Program of China(Grant No.2011BAD16B14)the Natural Science Foundation of Jiangsu Province,China(Grant No.BK2009-005)
文摘In 1996,China launched a program to breed super rice or super hybrid rice by combining intersubspecific heterosis with ideal plant types.Today,approximately 80 super rice varieties have been released and some of them show high grain yields of 12-21 t/hm2 in field experiments.The main reasons for the high yields of super rice varieties,compared with those of conventional varieties,can be summarized as follows:more spikelets per panicle and larger sink size (number of spikelets per square meter);larger leaf area index,longer duration of green leaf,greater photosynthetic rate,higher lodging resistance,greater dry matter accumulation before the heading stage,greater remobilization of pre-stored carbohydrates from stems and leaves to grains during the grain-filling period;and larger root system and greater root activity.However,there are two main problems in super rice production:poor grain-filling of the later-flowering inferior spikelets (in contrast to earlier-flowering superior spikelets),and low and unstable seed-setting rate.Here,we review recent research advances in the crop physiology of super rice,focusing on biological features,formation of yield components,and population quality.Finally,we suggest further research on crop physiology of super rice.
文摘The patch clamp recording technique in vivois a blind patch clamp recording methods to record the current of the spinal or cereral neurons of anaes:hesia ( or awake) animals. This technique can be used to study the synaptic function and plasticity in central nervous system in vivoin order to understand the physiological properties of the ion channels from an integrated point of view. The advantage of this technique have already presented itself in the study of the synaptic transmission and nervous network. Nowadays, in vivo patch whole-cell recording technique in combination with other techniques is becoming a common method in the research fields.
基金the National Natural Science Foundation of China(Nos.82030125 and 81873369)。
文摘The editorial board of Acupuncture and Herbal Medicine recently convened an academic seminar with a focus on studies regarding the mechanisms mediating acupuncture efficacy and moxibustion action inspired by the 2021 Nobel Prize in Physiology or Medicine.Specifically,Professor Bailong Xiao introduced the Nobel Prize for research on the mechanically activated Piezo ion channel,evaluating the structure of the Piezo channel and its physiological and pathological functions,and proposed a possible role for the Piezo channel in acupuncture mechanical stimulation.Professor Michael Xi Zhu introduced the discovery of the transient receptor potential(TRP)family,reporting that the therapeutic effects of Chinese medicine and acupuncture may be achieved via the TRP family,and that information regarding associations between the meridian and lymphatic systems may have important research and medical value.In addition,Professor Tianle Xu reviewed the history of ion channel research,particularly the physiological and pharmacological effects of non-classical ion channels(eg,the acid sensing ion channel family)and pointed out that the characterization and neural circuits of acupuncture deqi manipulation are important for elucidating the mechanisms of acupuncture actions.Professor Yongming Li similarly proposed that the 2021 Nobel Prize may open the door to disclosing the histological basis of acupuncture and moxibustion and analyzing the main scientific concerns regarding the clinical translation of acupuncture and moxibustion from basic to translational research.Finally,Professor Yi Guo summarized the study progress of the acupoint microenvironment induced by acupuncture over the course of nearly 30 years and put forward the hypothesis that acupuncture may initiate the physical-chemical coupling network by activating ion channel receptors in acupoints via physical and mechanical stimulation.Therefore,we conclude that a primary achievement of the 2021 Nobel Prize in Physiology or Medicine is in helping interpret how acupuncture and moxibustion adjust homeostasis(ie,by activating mechanical and thermal sensation),which is conducive to validating and promoting the clinical efficacy of acupuncture modalities.
文摘Objective:To investigate the electrophysiological effects of hydrogen sulfide (H2S) on left ventricular outflow tract autonomic cells in guinea pigs and its mechanism.Methods:Intracellular microelectrode recording technique was used to observe the electrophysiological effects of different concentrations of hydrogen sulfide on the autonomic cells of left ventricular outflow tract.Results: CSE irreversible inhibitor PPG (200 μmol/L) makes the left ventricular outflow tract of autorhythmic cells Vmax, RPF and VDD accelerate, APA increase (P<0.05);CBS synthase inhibitor AOAA (100μmol/L) acts on the autorhythmic cells of the left ventricular outflow tract without effect. The concentration-dependency of the 50, 100 and 200μmol/L NaHS made RPF and VDD of autorhythmic cell of the left ventricular outflow tract decrease with increasing concentration of NaHS, Vmax and APA decrease (P<0.01). The ATP sensitive potassium channel (KATP) blocker glybenclamide (Gli, 20 μmol/L) partially blocked the electrophysiological effects of NaHS (P<0.05). The L-Ca2+ channel agonist Bay K8644 could partially block the electrophysiological effects of NaHS.Conclusion:The autorhythmic cells of the left ventricular outflow tract had endogenous H2S produced by CSE. H2S had a negative chronotropic effect on autorhythmic cells in the left ventricular outflow tract, and its mechanism was related to the inhibition of L-Ca2+ channels by the open KATP pathway.
文摘Disordered signalling between the brain and the gut are generally accepted to underlie the functional bowel disorder, irritable bowel syndrome(IBS). However, partly due to the lack of disease-defining biomarkers, understanding the aetiology of this complex and multifactorial disease remains elusive. This common gastrointestinal disorder is characterised by alterations in bowel habit such as diarrhoea and/or constipation, bloating and abdominal pain, and symptom exacerbation has been linked with periods of stress, both psychosocial and infection-related. Indeed, a high level of comorbidity exists between IBS and stress-related mood disorders such as anxiety and depression. Moreover, studies have observed alterations in autonomic output and neuro-endocrine signalling in IBS patients. Accumulating evidence indicates that a maladaptive stress response, probably mediated by the stress hormone, corticotropin-releasing factor contributes to the initiation, persistence and severity of symptom flares.Other risk factors for developing IBS include a positive family history, childhood trauma, dietary factors and prior gastrointestinal infection. An emerging role has been attributed to the importance of immune factors in the pathophysiology of IBS with evidence of altered cytokine profiles and increased levels of mucosal immune cells. These factors have also been shown to have direct effects on neural signalling. This review discusses how pathological changes in neural, immune and endocrine pathways, and communication between these systems, contribute to symptom flares in IBS.
文摘The investigative evidence and emerging concepts in neurogastroenterology implicate dysfunctions at the levels of the enteric and central nervous systems as underlying causes of the prominent symptoms of many of the functional gastrointestinal disorders. Neurogastroenterological research aims for improved understanding of the physiology and pathophysiology of the digestive subsystems from which the arrays of functional symptoms emerge. The key subsystems for defecation-related symptoms and visceral hyper- sensitivity are the intestinal secretory glands, the musculature and the nervous system that controls and integrates their activity. Abdominal pain and discomfort arising from these systems adds the dimension of sensory neurophysiology. This review details current concepts for the underlying pathophysiology in terms of the physiology of intestinal secretion, motility, nervous control, sensing function, immuno-neural communication and the brain-gut axis.
文摘The formation of bile depends on the structural and functional integrity of the bile-secretory apparatus and its impairment, in different situations, results in the syndrome of cholestasis. The structural bases that permit bile secretion as well as various aspects related with its composition and flow rate in physiological conditions will first be reviewed. Canalicular bile is produced by polarized hepatocytes that hold transporters in their basolateral (sinusoidal) and apical (canalicular) plasma membrane. This review summarizes recent data on the molecular determinants of this primary bile formation. The major function of the biliary tree is modification of canalicular bile by secretory and reabsorptive processes in bileduct epithelial cells (cholangiocytes) as bile passes through bile ducts. The mechanisms of fluid and solute transport in cholangiocytes will also be discussed. In contrast to hepatocytes where secretion is constant and poorly controlled, cholangiocyte secretion is regulated by hormones and nerves. A short section dedicated to these regulatory mechanisms of bile secretion has been included. The aim of this revision was to set the bases for other reviews in this series that will be devoted to specific issues related with biliary physiology and pathology.
基金The research funding from the International Synchrotron Access Program(AS/IA133)of the Australian Synchrotron(to Pearson JT)A Grant-in-Aid for Scientific Research(#E056,26670413)from the Ministry of Education,Culture,Sports,Sciences and Technology of Japan(to Shirai M)
文摘Diabetes mellitus significantly increases the risk of cardiovascular disease and heart failure in patients.Independent of hypertension and coronary artery disease,diabetes is associated with a specific cardiomyopathy,known as diabetic cardiomyopathy(DCM).Four decades of research in experimental animal models and advances in clinical imaging techniques suggest that DCM is a progressive disease,beginning early after the onset of type 1 and type 2 diabetes,ahead of left ventricular remodeling and overt diastolic dysfunction.Although the molecular pathogenesis of early DCM still remains largely unclear,activation of protein kinase C appears to be central in driving the oxidative stress dependent and independent pathways in the development of contractile dysfunction.Multiple subcellular alterations to the cardiomyocyte are now being highlighted as critical events in the early changes to the rate of force development,relaxation and stability under pathophysiological stresses.These changes include perturbed calcium handling,suppressed activity of aerobic energy producing enzymes,altered transcriptional and posttranslational modification of membrane and sarcomeric cytoskeletal proteins,reduced actin-myosin cross-bridge cycling and dynamics,and changed myofilament calcium sensitivity.In this review,we will present and discuss novel aspects of the molecular pathogenesis of early DCM,with a special focus on the sarcomeric contractile apparatus.
文摘This review provides information on the definition of constipation, normal continence and defecation and a description of the pathophysiologic mechanisms of constipation. In addition, changes in the anatomy and physiology of the lower gastrointestinal tract associated with aging that may contribute to constipation are described. MEDLINE (1966-2007) and CINAHL (1980-2007) were searched. The following MeSH terms were used: constipation/etiology OR constipation/ physiology OR constipation/physiopathology) AND (age factors OR aged OR older OR 80 and over OR middle age). Constipation is not well defined in the literature. While self-reported constipation increases with age, findings from a limited number of clinical studies that utilized objective measures do not support this association. Dysmotility and pelvic floor dysfunction are important mechanisms associated with constipation. Changes in GI function associated with aging appear to be relatively subtle based on a limited amount of conflicting data. Additional research is warranted on the effects of aging on GI function, as well as on the timing of these changes.
基金Supported by A grant from Fonds zur Frderung des akademischen Nachwuchses(FAN)of the Zürcher Universittsverein(ZUNIV)to MSa research grant from the Swiss Philanthropy Foundation to MS and GR+3 种基金a research credit from the University of Zurich to MSresearch grants from the Swiss National Science Foundation(SNF)to MS,No.314730-146204,GR,No.310030-120312the Swiss IBD Cohort,No.3347CO-108792the Zurich Center for Integrative Human Physiology(ZIHP)of the University of Zurich
文摘Fistulae represent an important complication in patient suffering from Crohn's disease(CD). Cumulative incidence of fistula formation in CD patients is 17%-50% and about one third of patients suffer from recurring fistulae formation. Medical treatment options often fail and also surgery frequently is not successful. Available data indicate that CD-associated fistulae originate from an epithelial defect that may be caused by ongoing inflammation. Having undergone epithelial to mesenchymal transition(EMT), intestinal epithelial cells(IEC) penetrate into deeper layers of the mucosa and the gut wall causing localized tissue damage formation of a tube like structure and finally a connection to other organs or the body surface. EMT of IEC may be initially aimed toimprove wound repair mechanisms since "conventional" wound healing mechanisms, such as migration of fibroblasts, are impaired in CD patients. EMT also enhances activation of matrix remodelling enzymes such as matrix metalloproteinase(MMP)-3 and MMP-9 causing further tissue damage and inflammation. Finally, soluble mediators like TNF and interleukin-13 further induce their own expression in an autocrine manner and enhance expression of molecules associated with cell invasiveness aggravating the process. Additionally, pathogen-associated molecular patterns also seem to play a role for induction of EMT and fistula development. Though current knowledge suggests a number of therapeutic options, new and more effective therapeutic approaches are urgently needed for patients suffering from CD-associated fistulae. A better understanding of the pathophysiology of fistula formation, however, is a prerequisite for the development of more efficacious medical anti-fistula treatments.
基金Supported by National Science Council, No. NSC99-2628-B-002-008-MY3 and NSC100-2325-B-002-035
文摘The gastrointestinal tract is the largest reservoir of commensal bacteria in the human body, providing nutrients and space for the survival of microbes while concurrently operating mucosal barriers to confine the microbial population. The epithelial cells linked by tight junctions not only physically separate the microbiota from the lamina propria, but also secrete proinflammatory cytokines and reactive oxygen species in response to pathogen invasion and metabolic stress and serve as a sentinel to the underlying immune cells. Accumulating evidence indicates that commensal bacteria are involved in various physiological functions in the gut and microbial imbalances (dysbiosis) may cause pathology. Commensal bacteria are involved in the regulation of intestinal epithelial cell turnover, promotion of epithelial restitution and reorganization of tight junctions, all of which are pivotal for fortifying barrier function. Recent studies indicate that aberrant bacterial lipopolysaccharide-mediated signaling in gut mucosa may be involved in the pathogenesis of chronic inflammation and carcinogenesis. Our perception of enteric commensals has now changed from one of opportunistic pathogens to active participants in maintaining intestinal homeostasis. This review attempts to explain the dynamic interaction between the intestinal epithelium and commensal bacteria in disease and health status.
文摘Use of alcohol is a worldwide habit regardless of socio- economic background. Heavy alcohol consumption is a potential risk factor for induction of pancreatitis. The current review cites the updated literature on the alcohol metabolism, its effects on gastrointestinal and pancreatic function and in causing pancreatic injury, genetic predisposition of alcohol induced pancreatitis. Reports describing prospective mechanisms of action of alcohol activating the signal transduction pathways, induction of oxidative stress parameters through the development of animal models are being presented.