期刊文献+
共找到4篇文章
< 1 >
每页显示 20 50 100
用不同蛋白质分析方法鉴定玉米分泌蛋白组的比较研究 被引量:1
1
作者 马玮 Frank Hochholdinger 李春俭 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第10期2762-2766,共5页
玉米根系在生长过程中向根际分泌蛋白质类大分子物质。采用双向聚丙烯酰胺凝胶电泳-质谱技术,一维液相色谱-质谱联用(LC/MS)和Shotgun三种不同鉴定方法对无菌条件收集的玉米根系分泌蛋白进行了分离、分析与鉴定,对3种鉴定方法在分泌蛋... 玉米根系在生长过程中向根际分泌蛋白质类大分子物质。采用双向聚丙烯酰胺凝胶电泳-质谱技术,一维液相色谱-质谱联用(LC/MS)和Shotgun三种不同鉴定方法对无菌条件收集的玉米根系分泌蛋白进行了分离、分析与鉴定,对3种鉴定方法在分泌蛋白分析中的应用做了详细阐述和比较。结果表明,双向电泳通过银染可以看到200个蛋白质点,但由于蛋白量少,通过质谱无法对玉米根系分泌蛋白进行鉴定;用LC/MS鉴定得到了152个蛋白;用Shotgun技术鉴定得到了2 848个蛋白。LC/MS鉴定得到的蛋白全部出现在用Shotgun技术鉴定得到的2 848个蛋白中,后2种方法的结果可以互相验证。Shotgun技术具有更高的灵敏性,更适合对蛋白质浓度低、干扰物多的植物根分泌蛋白组进行鉴定,能够获得完整可靠的信息。 展开更多
关键词 玉米根系分泌物 分泌蛋白组 双向电泳 LC-MS SHOTGUN MUDPIT
下载PDF
Abscisic Acid Antagonizes Ethylene Production through the ABI4-Mediated Transcriptional Repression of ACS4 and ACS8 in Arabidopsis 被引量:10
2
作者 Zhijun Dong Yanwen Yu +3 位作者 Shenghui Li Juan Wang Saijun Tang Rongfeng Huang 《Molecular Plant》 SCIE CAS CSCD 2016年第1期126-135,共10页
Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for AB... Increasing evidence has revealed that abscisic acid (ABA) negatively modulates ethylene biosynthesis, although the underlying mechanism remains unclear. To identify the factors involved, we conducted a screen for ABA-insensitive mutants with altered ethylene production in Arabidopsis. A dominant allele of ABI4, abi4-152, which produces a putative protein with a 16-amino-acid truncation at the C-terminus of ABI4, reduces ethylene production. By contrast, two recessive knockout alleles of ABI4, abi4-102 and abi4-103, result in increased ethylene evolution, indicating that ABI4 negatively regulates ethylene produc- tion. Further analyses showed that expression of the ethylene biosynthesis genes ACS4, ACSS, and AC02 was significantly decreased in abi4-152 but increased in the knockout mutants, with partial dependence on ABA. Chromatin immunoprecipitation-quantitative PCR assays showed that ABI4 directly binds the pro- moters of these ethylene biosynthesis genes and that ABA enhances this interaction. A fusion protein containing the truncated ABI4-152 peptide accumulated to higher levels than its full-length counterpart in transgenic plants, suggesting that ABI4 is destabilized by its C terminus. Therefore, our results demon- strate that ABA negatively regulates ethylene production through ABI4-mediated transcriptional repression of the ethylene biosynthesis genes ACS4 and ACS8 in Arabidopsis. 展开更多
关键词 ABA ABI4 ethylene biosynthesis stress response transcriptional regulation
原文传递
Fluorescence Intensity Decay Shape Analysis Microscopy (FIDSAM) for Quantitative and Sensitive Live-Cell Imaging: A Novel Technique for Fluorescence Microscopy of Endogenously Expressed Fusion-Proteins 被引量:2
3
作者 Frank Schleifenbaum Kirstin Elgass +4 位作者 Marcus Sackrow Katharina Caesar Kenneth Berendzen Alfred J. Meixner Klaus Hatter 《Molecular Plant》 SCIE CAS CSCD 2010年第3期555-562,共8页
Fluorescent studies of living plant cells such as confocal microscopy and fluorescence lifetime imaging often suffer from a strong autofluorescent background contribution that significantly reduces the dynamic image c... Fluorescent studies of living plant cells such as confocal microscopy and fluorescence lifetime imaging often suffer from a strong autofluorescent background contribution that significantly reduces the dynamic image contrast and the quantitative access to sub-cellular processes at high spatial resolution. Here, we present a novel technique--fluorescence intensity decay shape analysis microscopy (FIDSAM) to enhance the dynamic contrast of a fluorescence image of at least one order of magnitude. The method is based on the analysis of the shape of the fluorescence intensity decay (fluorescence lifetime curve) and benefits from the fact that the decay patterns of typical fluorescence label dyes strongly differ from emission decay curves of autofluorescent sample areas. Using FIDSAM, we investigated Arabidopsis thaliana hypocotyl cells in their tissue environment, which accumulate an eGFP fusion of the plasma membrane marker protein LTI6b (LTI6b-eGFP) to low level. Whereas in conventional confocal fluorescence images, the membranes of neighboring cells can hardly be optically resolved due to the strong autofluorescence of the cell wall, FIDSAM allows for imaging of single, isolated membranes at high spatial resolution. Thus, FIDSAM will enable the sub-cellular analysis of even low-expressed fluorophoretagged proteins in living plant cells. Furthermore, the combination of FIDSAM with fluorescence lifetime imaging provides the basis to study the local physico-chemical environment of fluorophore-tagged biomolecules in living plant cells. 展开更多
关键词 Cell structure cell walls membrane proteins high-resolution fluorescence microscopy.
原文传递
SNOWY COTYLEDON 2 Promotes Chloroplast Development and Has a Role in Leaf Variegation in Both Lotus japonicus and Arabidopsis thaliana 被引量:4
4
作者 Nicola Zagari Omar Sandoval-lbanez +6 位作者 Niels Sandal Junyi Su Manuel Rodriguez-Concepcion Jens Stougaard Mathias Pribil Dario Leister Pablo Pulido 《Molecular Plant》 SCIE CAS CSCD 2017年第5期721-734,共14页
Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essentia... Plants contain various factors that transiently interact with subunits or intermediates of the thylakoid multiprotein complexes, promoting their stable association and integration. Hence, assembly factors are essential for chloroplast development and the transition from heterotrophic to phototrophic growth. Snowy cotyledon 2 (SCO2) is a DNAJ-like protein involved in thylakoid membrane biogenesis and interacts with the light-harvesting chlorophyll-binding protein LHCBI. In Arabidopsis thaliana, SCO2 function was previ- ously reported to be restricted to cotyledons. Here we show that disruption of SC02 in Lotus japonicus results not only in paler cotyledons but also in variegated true leaves. Furthermore, smaller and pale- green true leaves can also be observed in A. thaliana sco2 (atsco2) mutants under short-day conditions. In both species, SCO2 is required for proper accumulation of PSlI-LHCll complexes. In contrast to other variegated mutants, inhibition of chloroplastic translation strongly affects L. japonicus sco2 mutant devel- opment and fails to suppress their variegated phenotype. Moreover, inactivation of the suppressor of variegation AtClpR1 in the atsco2 background results in an additive double-mutant phenotype with variegated true leaves. Taken together, our results indicate that SCO2 plays a distinct role in PSll assembly or repair and constitutes a novel factor involved in leaf variegation. 展开更多
关键词 SCO2 DNAJ-like PHOTOSYNTHESIS assembly factor VARIEGATION chloroplast development
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部